
1 Dr. Tarek Helmy, ICS-KFUPM

Chapter 4:

Selection Structures

Dr. Tarek Ahmed Helmy El-Basuny

ICS-103

Computer Programming in C

Outline of Ch. 4 Topics

 Control structure statements in C are either:

 Sequential statements are executed in the order they are specified in the program.

 Selection statements cause the program control to be transferred to a specific flow

based upon whether a certain condition is true or not.

 Repetition statements allow you to specify that some statements can be repeated

while some condition remains true.

 Compound statement: we can groups multiple C statements into a single statement.

 Conditional, Relational, and Logical Operators

 The if statement and its flowchart

 The if statement with compound statements

 Nested if statements

 The switch statement

 Operators Priority in C

 Complementing a condition

 Common Programming Errors

2 Dr. Tarek Helmy, ICS-KFUPM

Control Structure Statements

 In the programs written so far, C statements

executed sequentially based on their order

within the body of the main function.

 In fact, we can change the flow of control by

using control structure statements.

 Control structure statement:

A statement that is used to control the flow

of execution in a program or a function.

 Three kinds of control structures:

Sequential: Sequential execution of

statements (i.e. Compound Statement)

Selection: Used for decisions, branching

or choosing between 2 or more alternative

paths (i.e. if and switch Statements)

Repetition: Used for looping; repeating a

piece of code multiple times [i.e. while, for

loop, do...while, will be discussed in

Chapter 5].

3 Dr. Tarek Helmy, ICS-KFUPM

Compound Statement

 A Compound statement consists of several individual statements enclosed within a

pair of braces { }. The individual statements may be: assignment, arithmetic expression

statement, control statements, compound statement, etc.

 A compound statement does not end with a semicolon.

 Usually, a function body consists of a compound statement.

 Accessibility of variables inside and outside of compound statement:

 A variable which is declared outside the compound statements, it is accessible both

inside and outside the compound statements.

 A variable which is declared inside the compound statements, it is not accessible

outside the compound statements.

 It is possible to declare a variable with the same name both inside and outside

the compound statements, but it is not recommended.

 The statements in the compound statement execute sequentially.

{

 statement1 ;

 statement2 ;

 . . .

 statementn ;

}

4 Dr. Tarek Helmy, ICS-KFUPM

int num = 10 ;

 if(num > 0)

 {

 printf ("\nNumber is Positive");

 printf ("\nThis is an Example of Compound Statement");

 }

Example of a compound statement

Conditions

 The condition is an expression that evaluates to either false (0) or true (1).

 Conditional statements cause dynamic flow of execution of the same

program.

 That means, each time the program runs, it may has different flow of

execution based on certain condition being true or false.

 Conditions are used in if statements, as following:

if (a >= b)

 printf("a is greater or equal to b");

else

 printf("a is less than b");

 The condition in the above example is: (a >= b)

5 Dr. Tarek Helmy, ICS-KFUPM

Relational and Equality Operators

 Relational operators in C evaluate to either false (0) or true (1).

 The equality operator == checks if the values of two operands are equal or

not. If they are equal, then the condition becomes true.

 The non equality operator != checks if the values of two operands are equal

or not. If they are not equal, then the condition becomes true.

Operator Meaning Type

< less than relational

> greater than relational

<= less than or equal to relational

>= greater than or equal to relational

== equal to equality

!= not equal to equality

6 Dr. Tarek Helmy, ICS-KFUPM

• The C language provides four relational and two equality operators for

comparing the values of expressions as shown next.

Examples of Relational and Equality Operators

-5

x

1024

i

1024

MAX

7

y

5.5

item

7.2

mean

'M'

ch

999

num

Operator Condition Value

<= x <= 0 true (1)

< i < MAX false (0)

>= x >= y false (0)

> item > mean false (0)

== ch == 'M' true (1)

!= num != MAX true (1)

7 Dr. Tarek Helmy, ICS-KFUPM

Logical Operators

 Three Logical Operators are:

&& logical AND

|| logical OR

! logical NOT

 Truth Table for logical operators

A B (A && B) (A || B) !A

true true true true false

true false false true false

false true false true true

false false false false true

8 Dr. Tarek Helmy, ICS-KFUPM

Example of Logical Expressions

 Logical Expression

 The condition that uses one or more logical operators.

Logical Expression Value

salary < 1000 || children > 4 true (1)

temperature > 35.0 && humidity > 0.90 false (0)

n >= 0 && n <= 100 false (0)

!(n >= 0 && n <= 100) true (1)

1050

salary

38.2

temperature

0.85

humidity

101

n

6

children

9 Dr. Tarek Helmy, ICS-KFUPM

Comparing Characters

 We can also compare characters in C based on their ASCII values.

 Using the relational and equality operators

Expression Value

'9' >= '0' 1 (true)

'a' < 'e' 1 (true)

'B' <= 'A' 0 (false)

'Z' == 'z' 0 (false)

'A' <= 'a' 1 (true)

ch >= 'a' && ch <= 'z' ch is lowercase?

10 Dr. Tarek Helmy, ICS-KFUPM

English Conditions as Logical Expressions

English Condition Logical Expression

x and y are greater than z x > z && y > z

x is equal to 1 or 3 x == 1 || x == 3

x is in the range min to max x >= min && x <= max

x is outside the range z to y x < z || x > y

11 Dr. Tarek Helmy, ICS-KFUPM

English Conditions as Logical Expressions

English Condition Logical Expression

Hours worked is over 40 (hours > 40.0)

 0 <= x <= 10 ((x >=0) && (x<=10))

Value is not negative (value >=0)

Sum does not equal 100 (sum != 100)

The character must be between A & F inclusive ((ch >= 'A') && (ch <= 'F'))

Any value over 100.00 receives a discount (value > 100.00)

Two numbers, a and b, differ by at least 5 (abs(a - b) >= 5)

Value does not equal -1 (value != -1)

Answer is either y or Y ((answer= ='y’)||(answer=='Y’))

The value is over 50 or under 25 ((value > 50)||(value < 25))

The number is even ((number % 2) = = 0)

12 Dr. Tarek Helmy, ICS-KFUPM

Flowcharts of if Statements

Two Alternatives

if-else statement

One Alternative

if statement

13 Dr. Tarek Helmy, ICS-KFUPM

if Statement (One Alternative)

if (statement is TRUE)

 Execute this line of code;

Or it can be:

if (condition) statementT;

 if condition evaluates to true then statementT is executed;

Otherwise, statementT is skipped.

 Example 1:

 if (x != 0.0)

 product = product * x ;

 Example 2:

 if (5 < 10)

 printf("Five is now less than ten, that's a big surprise");

14 Dr. Tarek Helmy, ICS-KFUPM

if Statement (Two Alternatives)

if (condition) statementT;

else statementF;

 if condition evaluates to true then statementT is executed and statementF is

skipped;

 Otherwise, statementT is skipped and statementF is executed

 Example 1:

if (x >= 0.0) printf("Positive");

else printf("Negative");

 Example 2:

if (age < 100) {/*If the age is less than 100*/

printf ("You are pretty young!\n");

}

Else { /* the age is more than or equal*/

printf("You are old\n");

}

15 Dr. Tarek Helmy, ICS-KFUPM

The if/else Selection Structure

 We may use compound statement (Set of statements within a pair of braces)

after if or else part.

 Example:

if (grade >= 60)

 {

 printf("Passed.\n");

 printf("You have done the job well.\n");

 }

else

 {

 printf("Failed.\n");

 printf("You must take this course again.\n”);

 }

16 Dr. Tarek Helmy, ICS-KFUPM

if with Compound Statements

if (ch >= 'A' && ch <= 'Z') {

 printf("Letter '%c' is Uppercase\n", ch);

 ch = ch – 'A' + 'a';

 printf("Converted to lowercase '%c'\n", ch);

}

else {

 printf("'%c' is not Uppercase letter\n", ch);

 printf("No conversion is done\n");

}

17 Dr. Tarek Helmy, ICS-KFUPM

Swap the values of two variables using if Statement

/* to swap the values of two variables x and y*/

if (x > y) { /* switch x and y */

 temp = x; /* save x in temp */

 x = y; /* x becomes y */

 y = temp; /* y becomes old x */

}

if statement x y temp Effect

12.5 5.0 ?

if (x > y) { 12.5>5.0 is true

 temp = x ; 12.5 Store old x in temp

 x = y ; 5.0 Store y in x

 y = temp ; 12.5 Store old x in y

18 Dr. Tarek Helmy, ICS-KFUPM

Nested if-else Statement

if (testExpression1) {

// statements to be executed if testExpression1 is true }

else if(testExpression2) {

// statements to be executed if testExpression1 is false and

testExpression2 is true }

else if (testExpression 3) {

// statements to be executed if testExpression1 and

testExpression2 are false and testExpression3 is true

} . .

else {

// statements to be executed if all test expressions are false

}

19 Dr. Tarek Helmy, ICS-KFUPM

Nested if Statements

 Nested if statement

 if statement inside another if statement

 Program decisions with multiple alternatives

 Example: The value of x is going to be tested. If it is positive then add 1 to

the positive counter or if it is negative then add 1 to the negative counter

otherwise it is zero and then add 1 to the zero counter.

if (x > 0)

 num_pos = num_pos + 1;

else

 if (x < 0)

 num_neg = num_neg + 1;

 else /* x equals 0 */

 num_zero = num_zero + 1;

20 Dr. Tarek Helmy, ICS-KFUPM

• Note:

• Since only one condition is

true.

• That means only one action

will be executed.

• The rest of actions will be

skipped.

Multiple-Alternative Decision Form

 The conditions are evaluated in sequence until a true

condition is reached.

 If a condition is true, the statement following it is

executed, and the rest is skipped.

if (x > 0)

 num_pos = num_pos + 1;

else if (x < 0)

 num_neg = num_neg + 1;

else /* x equals 0 */

 num_zero = num_zero + 1;

More

Readable

21 Dr. Tarek Helmy, ICS-KFUPM

Sequence of if Statements

 The previous example can be written in the following way but.

 All conditions are always tested (none is skipped) and,

 Less efficient than nested if for alternative decisions.

if (x > 0)

 num_pos = num_pos + 1;

if (x < 0)

 num_neg = num_neg + 1;

if (x == 0)

 num_zero = num_zero + 1;

Less

Efficient

than

nested if

22 Dr. Tarek Helmy, ICS-KFUPM

Example-1: Nested if-else Statement

1. // Program to relate two integers using =, > or <

2. #include <stdio.h>

3. int main() {

4. int number1, number2;

5. printf("Enter two integers: ");

6. scanf("%d %d", &number1, &number2);

7. //checks if two integers are equal.

8. if(number1 == number2) {

9. printf("Result: %d = %d",number1,number2); }

10. //checks if number1 is greater than number2.

11. else if (number1 > number2) {

12. printf("Result: %d > %d", number1, number2); }

13. // if both test expression is false

14. else {

15. printf("Result: %d < %d",number1, number2); }

16. return 0; }

23 Dr. Tarek Helmy, ICS-KFUPM

Example: if/else Selection Structure

 Write a C program that reads two variables and decides if they are equal or not .

int var1, var2;

printf("Input the value of var1:");

scanf("%d", &var1);

printf("Input the value of var2:");

scanf("%d",&var2);

if (var1 !=var2) {

printf("var1 is not equal to var2");

 //Below – if-else is nested inside another if block

 if (var1 >var2) {

 printf("var1 is greater than var2");

 }

else {

printf("var2 is greater than var1");

} }

else { printf("var1 is equal to var2"); }

24 Dr. Tarek Helmy

Example-2: Nested if-else Statement

 Write a C program that reads the student mark and decides the letter grade.

 Pseudo-code for a nested if/else structure

Read the grade of the student

If student’s grade is greater than or equal to 90

 Print “A”

else

 If student’s grade is greater than or equal to 80

 Print “B”

 else

 If student’s grade is greater than or equal to 70

 Print “C”

 else

 If student’s grade is greater than or equal to 60

 Print “D”

 else

 Print “F”

25 Dr. Tarek Helmy, ICS-KFUPM

 Given the following decision table, use it to calculate the Tax of the

employee.

Salary Range ($) Base Tax ($) % Excess

 0.00 to 14,999.99 0.00 15%

15,000.00 to 29,999.99 2,250.00 18%

30,000.00 to 49,999.99 5,400.00 22%

50,000.00 to 79,999.99 11,000.00 27%

80,000.00 to 150,000.00 21,600.00 33%

26 Dr. Tarek Helmy, ICS-KFUPM

Example-3: Nested if-else Statement

Function comp_tax

 Function comp_tax computes the tax based on the tax table shown

in the previous slide.

27 Dr. Tarek Helmy, ICS-KFUPM

Function comp_tax (cont'd)

28 Dr. Tarek Helmy, ICS-KFUPM

Road Sign Decision

 You are writing a program to control the warning signs at the

exists of major tunnels.

'S' means the road is Slippery/oily

temperature

29 Dr. Tarek Helmy, ICS-KFUPM

Road Sign Nested if Statement

if (road_status == 'S')

 if (temp > 0) {

 printf("Wet roads ahead\n");

 printf("Stopping time doubled\n");

 }

 else {

 printf("Icy roads ahead\n");

 printf("Stopping time quadrupled\n");

 }

else

 printf("Drive carefully!\n");

C associates else with the most recent incomplete if

30 Dr. Tarek Helmy, ICS-KFUPM

The switch Statement

 It can be used to select one of several

alternatives.

 Based on the value of a variable or simple

expression.

 Variable or expression may be of type int or

char but not of type double.

 The syntax for a switch statement in C is as

follows:

31 Dr. Tarek Helmy

The switch Multiple-Selection Structure

 Flowchart of the switch structure

true

false

.

.

.

case a

case a action(s)

break

case b

case b action(s)

break

false

false

case z

case z action(s)

break

true

true

default action(s)

32 Dr. Tarek Helmy

Explanation of switch Statement

 It takes the value of the variable class and compares it to each

of the cases in a top down approach.

 It stops after it finds the first case that is equal to the value of

the variable class.

 It then starts to execute each line following the matching case

till it finds a break statement.

 If no case is equal to the value of class, then the default case is

executed.

 Default case is optional. If no other case is equal to the value of

the controlling expression and there is no default case, the

entire switch body is skipped.

33 Dr. Tarek Helmy, ICS-KFUPM

More About the switch Statement

 One or more C statements may follow a case label.

 You do not need to enclose multiple statements in braces

after a case label.

 You cannot use a string as a case label.

 i.e. case "Cruiser": is not allowed

 Do not forget break at the end of each alternative.

 If the break statement is omitted then execution falls

through into the next alternative.

 Do not forget the braces of the switch statement.

34 Dr. Tarek Helmy, ICS-KFUPM

Example of switch Statement

35 Dr. Tarek Helmy, ICS-KFUPM

Class ID Ship Class

'B' or 'b' Battleship

'C' or 'c' Cruiser

'D' or 'd' Destroyer

'F' or 'f' Frigate

• Example: Display a message indicating the ship class based on this table.

Example: Switch statement in C

1. #include <stdio.h>

2. int main() {

3. int num=2;

4. switch(num+2) {

5. case 1: printf("Case1: Value is: %d", num);

6. case 2: printf("Case1: Value is: %d", num);

7. case 3: printf("Case1: Value is: %d", num);

8. default: printf("Default: Value is: %d", num);

9. }

10. return 0;

11. }

36 Dr. Tarek Helmy, ICS-KFUPM

• What is the output of the following program?

1. #include <stdio.h>

2. int main() {

3. int num=2;

4. switch(num+2) {

5. case 1: printf("Case1: Value is: %d", num);

6. case 2: printf("Case1: Value is: %d", num);

7. case 3: printf("Case1: Value is: %d", num);

8. default: printf("Default: Value is: %d", num);

9. }

10. return 0;

11. }

37 Dr. Tarek Helmy, ICS-KFUPM

• Since num value is 2 and after addition the expression resulted 4.

• Since there is no case defined with value 4 the default case is executed.

Output: Default: value is: 2

Example: Switch statement in C

1. #include <stdio.h>

2. int main() {

3. int i=2;

4. switch (i) {

5. case 1: printf("Case1 ");

6. case 2: printf("Case2 ");

7. case 3: printf("Case3 ");

8. case 4: printf("Case4 ");

9. default: printf("Default ");

10. }

11. return 0;

12. }

38 Dr. Tarek Helmy, ICS-KFUPM

• What is the output of the following program?

Example: Switch statement in C

1. #include <stdio.h>

2. int main() {

3. int i=2;

4. switch (i) {

5. case 1: printf("Case1 ");

6. case 2: printf("Case2 ");

7. case 3: printf("Case3 ");

8. case 4: printf("Case4 ");

9. default: printf("Default ");

10. }

11. return 0;

12. }

39 Dr. Tarek Helmy, ICS-KFUPM

• The value of the variable is 2 so the control jumped to the case 2,

• However there are no such statements in the above program which could break the

 flow after the execution of case 2.

• That’s the reason after case 2, all the subsequent cases and default statements got

 executed.

Output: Case2 Case3 Case4 Default

Example: Switch statement in C

1. #include <stdio.h>

2. int main() {

3. int i=2;

4. switch (i) {

5. case 1: printf("Case1 ");

6. break;

7. case 2: printf("Case2 ");

8. break;

9. case 3: printf("Case3 ");

10. break;

11. case 4: printf("Case4 ");

12. break;

13. default: printf("Default ");

14. }

15. return 0;

16. }

40 Dr. Tarek Helmy, ICS-KFUPM

• What is the output of the following program?

Example: Switch statement in C

1. #include <stdio.h>

2. int main() {

3. int i=2;

4. switch (i) {

5. case 1: printf("Case1 ");

6. break;

7. case 2: printf("Case2 ");

8. break;

9. case 3: printf("Case3 ");

10. break;

11. case 4: printf("Case4 ");

12. break;

13. default: printf("Default ");

14. }

15. return 0;

16. }

41 Dr. Tarek Helmy, ICS-KFUPM

• The value of the variable I is 2, the control goes to case 2 and then break.

Output: Case2

Example: Switch statement in C

Nested if Versus switch

 Nested if statements

 More general than a switch statement.

 Can implement any multiple-alternative decision.

 Can be used to check ranges of values.

 Can be used to compare double values.

 switch statement

 Syntax is more readable.

 Implemented more efficiently in machine language.

 Use switch whenever there are few case labels.

 Use default for values outside the set of case labels.

42 Dr. Tarek Helmy, ICS-KFUPM

Operator Priority/Precedence/الأسبقية

Operator Precedence/Priority

function calls highest

! + - & (unary operators)

* / %

+ –

< <= >= >

== !=

&& (logical AND)

|| (logical OR)

= (assignment operator) lowest

43 Dr. Tarek Helmy, ICS-KFUPM

Evaluation Tree, Step-by-Step Evaluation

)

44 Dr. Tarek Helmy, ICS-KFUPM

Short-Circuit Evaluation

 Stopping the evaluation of a logical expression as soon as its value

can be determined.

 Logical OR expression of the form (a || b)

 If a is true then (a || b) must be true, regardless of b.

 No need to evaluate b.

 However, if a is false then we should evaluate b.

 Logical AND expression of the form (a && b)

 If a is false then (a && b) must be false, regardless of b.

 No need to evaluate b.

 However, if a is true then we should evaluate b.

 Can be used to prevent division by zero

 (divisor != 0 && x / divisor > 5)

45 Dr. Tarek Helmy, ICS-KFUPM

Logical Assignment

 Use assignment to set int variables to false or true.

 The false value is zero

 C accepts any non-zero value as true

 Examples of Logical Assignment

 senior_citizen = (age >= 65);

 even = (n%2 == 0);

 uppercase = (ch >= 'A' && ch <= 'Z');

 lowercase = (ch >= 'a' && ch <= 'z');

 is_letter = (uppercase || lowercase);

46 Dr. Tarek Helmy, ICS-KFUPM

Complementing a Condition

 DeMorgan's Theorem

!(expr1 && expr2) == (!expr1 || !expr2)

!(expr1 || expr2) == (!expr1 && !expr2)

Example Equivalent Expression

!(item == 5) item != 5

!(age >= 65) age < 65

!(n > 0 && n < 10) n <= 0 || n >= 10

!(x == 1 || x == 3) x != 1 && x != 3

!(x>y && (c=='Y' || c=='y')) (x<=y) || (c!='Y' && c!='y')

47 Dr. Tarek Helmy, ICS-KFUPM

Common Programming Errors

 Do Not write: if (0 <= x <= 4)

 0 <= x is either false (0) or true (1)

 Then, false(0) or true(1) are always <= 4

 Therefore, (0 <= x <= 4) is always true

 Instead, write: if (0 <= x && x <= 4)

 Do Not write: if (x = 10)

 = is the assignment operator

 x becomes 10 which is non-zero (true)

 if (x = 10) is always true

 Instead, write: if (x == 10)

48 Dr. Tarek Helmy, ICS-KFUPM

More Common Errors

 In if statements:

 Don’t forget to parenthesize the if (condition).

 Don’t forget { and } in if with compound statements.

 Correct nest of if and else statements:

 C matches else with the closest unmatched if.

 In switch statements:

 Make sure the controlling expression and case labels are of the same permitted type

(int or char).

 Remember to include the default case.

 Don’t forget { and } for the switch statement.

 Don’t forget the break at the end of each case.

 You do not need to enclose multiple statements in braces after a case label.

 You cannot use a string as a case label.

 i.e. case "Cruiser": is not allowed

 Do not forget break at the end of each alternative.

 Do not forget the braces of the switch statement.

49 Dr. Tarek Helmy, ICS-KFUPM

Dr. Tarek Helmy, ICS-KFUPM

The End!!

Thank you

Any Questions?

50

Outline of Ch. 4 Topics

 In the last class, we discussed:

 Control Structure Statements

 Sequential, Selection, and Repetition statements

 Compound statements with examples

 Conditions Expression

 Relational, and Logic Operators

 Examples of Relational and Equality Operators in Expressions

 Example of Logical Operators in Expressions

 Conditions, Relational, and Logic Operators

 The if statement and its Flowchart

 if Statement with Compound Statements

 Nested if statements

 In today’s class, we are going to discuss:

 More Program Examples of using Nested if statements

 The switch-case Statement

 Program Examples of using switch-case statements

 Operators Priority,

 Complementing a Condition

 Common Programming Errors

51 Dr. Tarek Helmy, ICS-KFUPM

