
1 Dr. Tarek Helmy

Chapter 7.6

Searching, Sorting, and 2D Arrays

Dr. Tarek Ahmed Helmy El-Basuny

Lectures 22-24

ICS-103

Computer Programming in C

Outline of Ch. 07 Topics

 What is Searching?

 Why do we use a searching algorithm?

 Linear/Sequential Search Algorithm,

 Implementing Linear search algorithm

 Program Example of Searching in Arrays using Linear Search.

 The main idea of Binary Search Algorithm,

 Implementation of Binary Search Algorithm

 Animating Examples of Searching Using Binary Search.

 Program Example of Searching in Arrays using Binary Search

 What is Sorting?

 Why do we use Sorting?

 Selection Sort Algorithm,

 Program Example of Sorting Arrays by using Selection Sort Algorithm.

 Declaring and initializing 2D Arrays.

 Indexing and Processing 2D Arrays Elements

 Program Examples of Using 2D Arrays

2 Dr. Tarek Helmy

FYI , not

for exams

Dr. Tarek Helmy 3

What is Searching?

• Searching is an every day activity we may do: i.e.

• Searching for a particular item among a collection of many items.

• Search for a person’s Telephone number in a telephone book. You need to
search for the Tel. as an “int”. How difficult is this?

• Suppose you have the same telephone book and you want to find a person’s
name that has a certain telephone number. You need to search for the name
as a “string”. How would you find it? Why is this more difficult?

• Suppose you have the same telephone book where its content is
alphabetically sorted. You know the person’s name and you want to search
for a person’s telephone number. How difficult is this?

• Searching algorithm is a method of locating a specific item of information in a

larger collection of data.

Dr. Tarek Helmy 4

Searching Problem

• Searching for data is one of the fundamental processes of computing.

• Often, the difference between a fast program and a slow one is the use of a

good searching algorithm for the searching in the data set.

• There are many algorithms to perform searching. We will briefly explore

the two commonly used:

• The Linear/Sequential Search,

• Start at the beginning of the collection/list and walk to the end,
testing for a match at each item in the collection/list.

• The Binary Search (used with sorted collections)

• Start to test of the match at the middle of the list/collection (because
the list is sorted), based on the result we could determine in which
half the item is in, and recursively search that half.

• A question you should always ask when selecting a searching algorithm is

“How fast does the search have to be?”

• In general, the faster the algorithm is, the more complex it is.

Linear/Sequential Search Algorithm

 The linear or (Sequential) search algorithm is used with unsorted

collection/list. It can be used with sorted list but it is not recommended.

 It sequentially scans the array, comparing each item with the target

value.

 If a match is found; then return the index of the matched element;

 otherwise return –1.

 The pseudo-code of the linear search algorithm

 While the target is not found and there are more array elements,

 Start with first array element and compare it with the target,

• If the current element matches the target,

 Set a flag to indicate that the target was found, and return the

target index as the search result.

 Else, advance to the next array element, or return -1 as the

search result.

5 Dr. Tarek Helmy

Linear Search Implementation

/* Search array a[] for target using linear search

 * Returns the index of target or -1 if not found */

int linear_search(const int a[], int target, int n) {

 int i = 0, found = 0;

 while (!found && i<n) {//we did not find the target and there are elements

 if (a[i] == target)

 found = 1;

 else

 ++i;

 }

 if (found) return i;

 else return -1;

}

• For an array of n elements, linear search

uses an average of n/2 comparisons to

find an item.

• The worst case being n comparisons.

6 Dr. Tarek Helmy

Example: Searching in Arrays using Linear Search

/* a program that reads number of elements, fill them into an array
then asks the user to enter a number to check for it in the array */

#include <stdio.h>

int main() {

int array[100], search, c, n;

printf("Enter the number of elements in array\n");

scanf("%d",&n);

printf("Enter %d integer(s)\n", n);

for (c = 0; c < n; c++)

scanf("%d", &array[c]);

printf("Enter the number to search\n");

scanf("%d", &search);

for (c = 0; c < n; c++) {

if (array[c] == search) /* if required element found */

{ printf("%d is present at location %d.\n", search, c+1);

break; } }

if (c == n) printf("%d is not present in array.\n", search);

return 0; }

7 Dr. Tarek Helmy

Dr. Tarek Helmy, ICS-KFUPM 8

Binary Search Algorithm

• If an array is sorted, it is a waste of time to look for an item using Linear

search. It would be like looking for a word in a dictionary sequentially.

• When the data collection to search in is sorted, we can use Binary search.

• With Binary search, we can ignore one-half of the collection and focus on the

other half.

 Binary search works by comparing the target with the item at the middle of

the array/list:

1. If the target matches the middle item, then we are done.

2. If the target is less than the middle item, then we will search the first half

of the array.

3. If the target is bigger than the middle item, then we will search the second

half of the array.

 Repeat until target is found or nothing to search.

Dr. Tarek Helmy, ICS-KFUPM 9

Binary Search

 Linear search has linear time complexity:

 Time is n if the item is not found,

 Time is n/2, on average, if the item is found.

 If the array is sorted, we can write a faster search where the average

time could be n/4. That is called Binary search.

Dr. Tarek Helmy, ICS-KFUPM 10

Binary Search Algorithm

 To find which element (if any) of a[left..right] is equal to key/target

(where a is sorted in ascending order).

Set l = left (0), and r = right (size-1)

While l <= r, repeat: // means there is some elements in the list

 Let m be an index of an element about the middle between l and r

 m = (l + r) / 2

 If key/target is equal to a[m], terminate with answer m.

 If key/target is less than a[m], set r = m–1, Binary search lower half.

 If key/target is greater than a[m], set l = m+1, Binary search upper

half.

 Otherwise, terminate with answer none.

• • • • • •
l r m m-1 m+1

?

l m r

6 6 7

4 7 8 10 14 21 22 36 54 71 85 92

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

l m r

6 8 11

4 7 8 10 14 21 22 36 54 71 85 92

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Binary Search: Target Exist

4 7 8 10 14 21 22 36 54 71 85 92

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

l(left) m (middle) r(right)

0 5 11

22>21

Key/Target = 22

22<54

22==22

11 Dr. Tarek Helmy

Dr. Tarek Helmy, ICS-KFUPM 12

Example of Binary Search: Target is not Exist

1. (0+15)/2=7; a[7]=19;

19 is less than 36; search 8..15

2. (8+15)/2=11; a[11]=32;

 32 is less than 36; search 12..15

3. (12+15)/2=13; a[13]=37;

37 is more than 36; search 12..12

5 7 10 13 13 15 19 19 23 28 28 32 32 37 41

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Search the sorted array a for 36:

a 46

4. (12+12)/2=12; a[12]=32;

 32 is less than 36; search 13..12 ...but 13>12, so quit: 36 not found

Binary Search Implementation

int binary_search (int a[], int target, int n) {

 int first=0, last=n-1, mid;

 while (first <= last) { /*there are more elements in the array*/

 mid = (first + last)/2;

 if (target == a[mid])

 return mid; /* target found */

 else if (target < a[mid])

 last = mid – 1;

 else

 first = mid + 1;

 }

 return -1; /* target not found */

}

13 Dr. Tarek Helmy

Example: Searching in Arrays using Binary Search

#include <stdio.h>

int main() {

int c, first, last, middle, n, search, array[100];

printf("Enter number of elements\n");

scanf("%d", &n);

printf("Enter %d integers\n", n);

for (c = 0; c < n; c++)

scanf("%d",&array[c]);

printf("Enter value to find\n");

scanf("%d", &search);

first = 0; last = n - 1; middle = (first+last)/2;

while (first <= last) {

if (array[middle] < search)

first = middle + 1;

else if (array[middle] == search) {

printf("%d found at location %d.\n", search, middle+1);

break; }

else last = middle - 1;

middle = (first + last)/2; }

if (first > last)

printf("Not found! %d is not present in the list.\n", search);

return 0; }

14 Dr. Tarek Helmy

/* a program that reads number of elements,
fills them into an array then asks the user
to enter a number to check for it in the
array using Binary search*/

Dr. Tarek Helmy, ICS-KFUPM 15

What is Sorting and why do we use it?

 Sorting is the process of arranging the data in a collection or a storage media

such that it is in increasing or decreasing order of some key.

 Why do we need to sort data?

 To arrange names in alphabetical order.

 Arrange students by their IDs, Grades, Names, … etc.

 As a preliminary step to search using Binary search algorithm.

 Sorting speeds up searching in:

 Dictionaries

 Files in a directory

 Calendar

 Phone list

 Basic steps of sorting involve:

 Compare two items

 Swap the two items or copy one item

27

10

15

31

11

11

15

27

31

10

sort

Unsorted Array Sorted Array

Sorting Problem

 Sorting is the ordering of a collection of data based on a certain key.

 It is a common activity in data management.

 Many programs execute faster if the data they process are sorted

before processing begins.

 Other programs produce more understandable output if the data

displayed is sorted.

 Many sorting algorithms have been designed.

 We shall consider only in this course the “Selection Sort” method.

16 Dr. Tarek Helmy

17

Selection Sort Algorithm

 Scanning the list from the beginning to find (or select) the
smallest/largest element and swap it with the first element.

 The rest of the list is then searched for the next smallest/largest to swap
it with the second element.

 This process is repeated until the rest of the list reduces to one element,
by which time the list is sorted.

 i.e. given an array of length n, to sort it in ascending order:-

 Search elements 0 through n-1 and select the smallest/largest

 Swap it with the element in location 0

 Search elements 1 through n-1 and select the smallest/largest

 Swap it with the element in location 1

 Search elements 2 through n-1 and select the smallest/largest

 Swap it with the element in location 2

 Search elements 3 through n-1 and select the smallest/largest

 Swap it with the element in location 3

 Continue in this fashion until there’s nothing left to search.

Dr. Tarek Helmy, ICS-KFUPM

Dr. Tarek Helmy, ICS-KFUPM 18

Steps of Selection Sort

Dr. Tarek Helmy, ICS-KFUPM 19

Selection Sort

 How many time do we need to (compare) thought the array to

select the next smallest/largest item and how many times do we go

through to place that item where it belongs in array?

 Given an array of size 5, let us see how many times are needed.

27

10

15

31

11

27

11

15

31

10

11

27

15

31

10

11

15

27

31

10

11

15

27

31

10

Dr. Tarek Helmy, ICS-KFUPM 20

Selection Sort

• The selection sort is a combination of searching and sorting.

• Selecting the lowest element requires scanning all n elements (this takes n−1

comparisons) and then swapping it into the first position.

• Finding the next lowest element requires scanning the remaining n − 1 element

s and so on.

• In general: to sort an array with k elements, Selection sort algorithm requires k

– 1 passes.

Outline of Ch. 07 Topics

 In the last class, we discussed:

 What is Searching?

 Why do we use a searching algorithm?

 Linear/Sequential Search Algorithm,

 Implementing Linear search algorithm

 Program Example of Searching in Arrays using Linear Search.

 The main idea of Binary Search Algorithm,

 Implementation of Binary Search Algorithm

 Animating Examples of Searching Using Binary Search.

 Program Example of Searching in Arrays using Binary Search

 What is Sorting?

 Why do we use Sorting?

 Selection Sort Algorithm,

 In today’s class, we are going to discuss:

 Implementing of Selection Sort Algorithm.

 Declaring and initializing 2D Arrays.

 Indexing and Processing 2D Arrays Elements

 Program Examples of Using 2D Arrays

21 Dr. Tarek Helmy

Selection Sort Algorithm

 Find the index of the

smallest element in

the array.

 Swap the smallest

element with the first

element.

 Repeat for the 2nd,

3rd, …next smallest

element.

0

22 Dr. Tarek Helmy

Selection Sort Function

*/

*/

*/

*/

*/

23 Dr. Tarek Helmy

Smallest Element in Sub-Array

/* Find the smallest element in the sub-array list[first]

 * through list[last], where first<last.

 * Return the index of the smallest element in sub-array

 */

int get_min_range(int list[], int first, int last) {

 int i;

 int index_min = first;

 for (i=first+1; i<=last; i++) {

 if (list[i] < list[index_min]) index_min = i;

 }

 return index_min;

}

24 Dr. Tarek Helmy

Two-Dimensional Arrays

 A 2D array is a contiguous collection of elements of the same

type, that may be viewed as a table or a matrix consisting of

multiple rows and multiple columns.

 To store the grades of 30 students in 3 courses,

 By using 1-D array, we need 3 1-D arrays each of 30 rows and

one columns.

 We can use one 2-D array of 30 rows and 5 columns.

Column

Row
0

1

2

0 1 2 3

25 Dr. Tarek Helmy

Row

0

1

2

1

Row

0

1

2

1

Row

0

1

2

1

2D Array Declaration

 A 2D array is declared by specifying the type of element, the

name of the variable, followed by the number of rows and the

number of columns.

 As with 1D arrays, it is a good practice to declare the row and

column sizes as named constants:

#define ROWS 3

#define COLS 4

. . .

int table[ROWS][COLS];

 Both rows and columns are indexed from zero to rows-1 and

columns-1.

Column

Row
0

1

2

0 1 2 3

26 Dr. Tarek Helmy

Indexing 2D Arrays

 A 2D array element is indexed by specifying its row and column

indices.

 C arrays are row major, which means that we always refer to the row

first.

 The following statement stores 51 in the cell with row index 1, and

column index 3:

table[1][3] = 51;

 Here is another example:

table[2][3] = table[1][3] + 6;

 That means stores 57 in the cell

 with row index 2, and column index 3:

0

1

2

51

0 1 2 3

0

1

2

51
57

0 1 2 3

27 Dr. Tarek Helmy

 You can declare and initialize a 2D array at the same time.

 Example:

int grades[5][3] = {

 { 78, 83, 82 },

 { 90, 88, 94 },

 { 71, 73, 78 },

 { 97, 96, 95 },

 { 89, 93, 90 }

};

 int disp[2][4] = { 10, 11, 12, 13, 14, 15, 16, 17};

 A two-D Array can be seen as an array of arrays.

 Each row is itself a one-D array.

Initializing 2D Arrays

28 Dr. Tarek Helmy

Initializing 2D Arrays

 int table[][4] = {{1,2,2,5},{3,4,6},{5,6,7,9}};

 If you provide less values than the declared size, the remaining cells are

set to zero.

 /* Valid declaration*/

 int abc[2][2] = {1, 2, 3 ,4 }

 /* Valid declaration*/

 int abc[][2] = {1, 2, 3 ,4 }

 /* Invalid declaration – you must specify second dimension*/

 int abc[][] = {1, 2, 3 ,4 }

 /* Invalid because of the same reason mentioned above*/

 int abc[2][] = {1, 2, 3 ,4 }

0

1

2

1

3

5

2

4

6

2

6

7

5

0

9

0 1 2 3
It is ok to omit the number of rows but

not the number of columns

29 Dr. Tarek Helmy

Processing 2D Arrays

 To process a 2D array, we use a nested loop, and traverse

the 2D array either row-wise or column-wise

 To process the elements row-wise, we use the outer loop for

rows and the inner loop for the column.

for (i = 0; i < ROWS; i++)

 for(j = 0; j < COLS; j++) {

 /* process table[i][j] */

 }

 To process the elements column-wise, we use the outer loop

for column and the inner loop for the rows.

for (j = 0; j < COLS; j++)

 for(i = 0; i < ROWS; i++) {

 /* process table[i][j] */

 }

30 Dr. Tarek Helmy

 To find the sum of all elements in a 2D Array.

 Use for loop to tell you how many rows in the 2D array.

 Use for loop to tell you how many columns in the 2D array.

 Calculate the total sum of all elements in the array.

 Divide it by the rows*columns.

Total Sum & Average of a 2D Array

int sum = 0;

for(int r = 0; r < rows; r++)

 for(int c = 0; c < cols; c++)

 sum = sum + array[r][c];

int avg = sum / (rows*cols);

Overall Average

2D Array As a Parameter

 As with 1D arrays, it is possible to declare a function that takes

a 2D array as a parameter.

 The size of the first dimension (number of rows) need not be

specified in the 2D array parameter.

 However, the size of the second dimension (columns) must be

specified as a constant.

 One solution is to use a named constant defining the maximum

number of columns and use additional parameters for the

actual size of the 2D array:

void read_2d(double a[][COLS], int r, int c);

32 Dr. Tarek Helmy

Program to Add 2D Arrays

/* A program that reads two 2D arrays, sum the corresponding
elements of them into a sum 2D array then display it on the
monitor */

#include <stdio.h>

#define ROWS 10 /* maximum number of rows */

#define COLS 10 /* maximum number of cols */

void read_2d (double a[][COLS], int r, int c);

void add_2d (double a[][COLS],

 double b[][COLS],

 double s[][COLS], int r, int c);

void print_2d(double a[][COLS], int r, int c);

33 Dr. Tarek Helmy

Function to Read a 2D Array

void read_2d (double a[][COLS], int r, int c) {

 int i, j;

 printf("Enter a table with %d rows\n", r);

 printf("Each row having %d numbers\n", c);

 for (i=0; i<r; i++)

 for (j=0; j<c; j++)

 scanf("%lf", &a[i][j]);

}

34 Dr. Tarek Helmy

Function to Add Two 2D Arrays

void add_2d (double a[][COLS],

 double b[][COLS],

 double s[][COLS], int r, int c) {

 int i, j;

 for (i=0; i<r; i++)

 for (j=0; j<c; j++)

 s[i][j] = a[i][j] + b[i][j];

}

35 Dr. Tarek Helmy

Function to Print a 2D Array

void print_2d(double a[][COLS], int r, int c) {

 int i, j;

 for (i=0; i<r; i++) {

 for (j=0; j<c; j++)

 printf(" %6.1f", a[i][j]);

 printf("\n");

 }

}

36 Dr. Tarek Helmy

Main Function

int main(void) {

 double x[ROWS][COLS], y[ROWS][COLS], z[ROWS][COLS];

 int rows, cols;

 printf("Enter number of rows: ");

 scanf("%d", &rows);

 printf("Enter number of columns: ");

 scanf("%d", &cols);

 read_2d(x, rows, cols); /* read matrix x */

 read_2d(y, rows, cols); /* read matrix y */

 add_2d(x, y, z, rows, cols); /* Add x + y */

 printf("The sum of two matrices is:\n");

 print_2d(z, rows, cols); /* Print matrix z */

 return 0;

}

37 Dr. Tarek Helmy

Sample Run . . .

38 Dr. Tarek Helmy

Dr. Tarek Helmy

The End!!

Thank you

Any Questions?

39

