
1 Dr. Tarek Helmy, ICS-KFUPM

Chapter 5:

Repetition and Loop Statements in C

Dr. Tarek Ahmed Helmy El-Basuny

ICS-103

Computer Programming in C

Outline of Ch. 05 Topics

 Repetition in C Programs

 Counting/Unconditional Loops

 The while statement

 Code examples of using while statement

 The for statement

 Code examples of using for statement

 Conditional Loops

 Code examples of using conditional loops

 Nested Loops

 Code examples of using nested loops

 The do-while statement

 Code examples of using do-while statement

 How to debug and test programs

 Common Programming Errors

2 Dr. Tarek Helmy

Repetition in Programs

 Loop structure

 A control structure that repeats a group of statements in a program

 Three loop control structures in C:

 The while statement

 The for statement

 The do-while statement

 Loop body

 The statements that are repeated inside the loop

 Three questions to raise to implement loop structure:

1. Are there any statements need to be repeated in the problem?

2. If the answer to question 1 is yes,

 Is the number of repetitions known in advance?

3. If the answer to question 2 is no,

 Then how long to keep repeating the steps?

 Based on the answers of the above questions, we can decide which loop

structure we can use?

3 Dr. Tarek Helmy

Flowchart of Loop Choice

4 Dr. Tarek Helmy

Counting/Unconditional Loop: while Statement

 Counting loop:

 A loop that can be controlled by a counter variable

 The number of iterations (repetitions) can be determined before

loop execution begins.

 General format of a counting loop:

Set loop control variable to an initial value;

while (loop control variable < final value) {

 Do something multiple times ;

 Increase loop control variable by 1;

}

5 Dr. Tarek Helmy

The while Statement

 Syntax:

while (condition) {

 statement1 ;

 statement2 ;

 . . .

 statementN ;

}

 As long as the condition is true, the

loop body is executed.

 Re-test the condition after each

iteration.

 The loop terminates when the

condition becomes false.

Loop Body:

Can be one statement,

or compound statement

Loop Repetition Condition

6 Dr. Tarek Helmy

Example of a while Loop

 Compute and display the total payment for 7 employees.

 Initialization: count_emp = 0;

 Testing: (count_emp < 7)

 Do the calculation;

 Updating: count_emp = count_emp + 1;

7

7 Dr. Tarek Helmy

Flowchart of a while Loop

Loop repetition condition

Loop body

If count_emp is not updated,

the loop will execute forever.

Such a loop is called infinite loop.

8 Dr. Tarek Helmy

Total Payroll of a Company

9 Dr. Tarek Helmy

Textbook_Source_Code/Chapter 5/05_04.doc

Sample Run

Enter number of employees> 3

Hours> 50

Rate> $5.25

Pay is $262.50

Hours> 6

Rate> $5.0

Pay is $ 30.00

Hours> 15

Rate> $7.0

Pay is $105.00

All employees processed

Total payroll is $ 397.50

10 Dr. Tarek Helmy

Example of a while Loop

 Just like relational operators (<, >, >=, <=, ! =, ==), we can also use logical

operators in while loop.

 In this example we are testing multiple conditions using logical operator

inside while loop.

1. #include <stdio.h>

2. int main() {

3. int i=1, j=1;

4. while (i <= 4 || j <= 3) {

5. printf("%d %d\n",i, j);

6. i++;

7. j++;

8. }

9. return 0;

10. }

11 Dr. Tarek Helmy

Example of a while Loop

 Just like relational operators (<, >, >=, <=, ! =, ==), we can also use logical

operators in while loop.

 In this example we are testing multiple conditions using logical or operator

inside while loop.

1. #include <stdio.h>

2. int main() {

3. int i=1, j=1;

4. while (i <= 4 || j <= 3) {

5. printf("%d %d\n",i, j);

6. i++;

7. j++;

8. }

9. return 0;

10. }

12 Dr. Tarek Helmy

Output:

1 1

2 2

3 3

4 4

Example of a while Loop

 You can make use of break to come out of while loop at any time.

 In this example we are testing how to use break to terminate the while

loop.

#include <stdio.h>

main() {

 int i = 10;

 while (i > 0) {

printf("Hello %d\n", i);

 i = i -1;

 if(i == 6) {

 break;

 }

 }

}

13 Dr. Tarek Helmy

Example of a while Loop

 You can make use of break to come out of while loop at any time.

 In this example we are testing how to use break to terminate the while

loop.

#include <stdio.h>

main() {

 int i = 10;

 while (i > 0) {

printf("Hello %d\n", i);

 i = i -1;

 if(i == 6) {

 break;

 }

 }

}

14 Dr. Tarek Helmy

Output:

Hello 10

Hello 9

Hello 8

Hello 7

Counting Loop: The for Statement

 Format of for loop:

for (initialization expression;

 loop repetition condition;

 update expression)

 Statement;/*Can be Compound*/

 First, the initialization expression is

executed.

 Then, the loop repetition condition is

tested.

 If true, the statement is

executed, the update expression

is computed, and the repetition

condition is re-tested.

 Repeat as long as the repetition

condition is true.

15 Dr. Tarek Helmy

Accumulating a Sum: total_pay

/* initialization */

/* repetition condition */

/* update */

16 Dr. Tarek Helmy

Example of a for Loop

 Calculate the sum of first n natural numbers.

#include <stdio.h>

main() {

 int num, count, sum = 0;

 printf("Enter a positive integer: ");

 scanf("%d", &num);

// for loop terminates when count is less than or equal the num

for(count = 1; count <= num; ++count)

 {

 sum += count;

 }

printf("Sum = %d", sum);

return 0;

}

17 Dr. Tarek Helmy

Example of a for Loop

 Calculate the sum of first n natural numbers.

#include <stdio.h>

main() {

 int num, count, sum = 0;

 printf("Enter a positive integer: ");

 scanf("%d", &num);

// for loop terminates when n is less than count

for(count = 1; count <= num; ++count)

 {

 sum += count;

 }

printf("Sum = %d", sum);

return 0;

}

18 Dr. Tarek Helmy

Output:

Enter a positive integer: 10

Sum = 55

Example of a for Loop

 The program takes an integer input from the user and generates the

multiplication table up to 10.

#include <stdio.h>

int main() {

int n, i;

printf("Enter an integer: ");

scanf("%d",&n);

 for(i=1; i<=10; ++i) {

 printf("%d * %d = %d \n", n, i, n*i);

 }

return 0;

 }

19 Dr. Tarek Helmy

Example of a for Loop

 The program takes an integer input from the

user and generates the multiplication table up

to 10.

#include <stdio.h>

int main() {

int n, i;

printf("Enter an integer: ");

scanf("%d",&n);

 for(i=1; i<=10; ++i) {

 printf("%d * %d = %d \n", n, i, n*i);

 }

return 0;

 }

20 Dr. Tarek Helmy

Output:

Enter an integer: 9

9 * 1 = 9

9 * 2 = 18

9 * 3 = 27

9 * 4 = 36

9 * 5 = 45

9 * 6 = 54

9 * 7 = 63

9 * 8 = 72

9 * 9 = 81

9 * 10 = 90

Compound Assignment Operators

 The compound assignment operators enable you to abbreviate assignment statements.

 For example, the statement value = value + 3 can be written as value += 3.

 The += operator adds the value of the right operand to the value of the left operand and

stores the result in the left operand's variable.

21 Dr. Tarek Helmy

Compound assignment operator Sample expression Explanation Assigns

Assume: c = 4, d = "He"

+= c += 7 c = c + 7 11 to c

-= c -= 3 c = c - 3 1 to c

*= c *= 4 c = c * 4 16 to c

/= c /= 2 c = c / 2 2 to c

\= or %=(reminder) c \= 3 c = c \ 3 1 to c

^= (exponent) c ^= 2 c = c ^ 2 16 to c

&= (concatenate) d &= "llo" d = d & "llo" "Hello" to d

Compound Assignment Operators

 The following table lists the assignment operators supported by the C language.

22 Dr. Tarek Helmy

Operator Description Example

= Assignment operator. Assigns values from right side operands

to left side operand.

C = A + B will assign the value of A

+ B to C

+= Add AND assignment operator. It adds the right operand to

the left operand and assign the result to the left operand.

C += A is equivalent to C = C + A

−= Subtract AND assignment operator. It subtracts the right

operand from the left operand and assigns the result to the left

operand.

C −= A is equivalent to C = C − A

*= Multiply AND assignment operator. It multiplies the right

operand with the left operand and assigns the result to the left

operand.

C *= A is equivalent to C = C * A

/= Divide AND assignment operator. It divides the left operand

with the right operand and assigns the result to the left operand.

C /= A is equivalent to C = C / A

\= Divide AND assignment operator: Divides the value of a

variable or property on its left by the value on its right, and

assigns the integer result to the variable or property on its left.

C \= A is equivalent to C = C / A

%= Remainder Operator: Compute the remainder after division. C %= A is equivalent to C = C % A

<<= Left shift AND assignment operator. C <<= 2 is same as C = C << 2

>>= Right shift AND assignment operator. C >>= 2 is same as C = C >> 2

&= Bitwise AND assignment operator. C &= 2 is same as C = C & 2

^= Bitwise exclusive OR and assignment operator. C ^= 2 is same as C = C ^ 2

|= Bitwise inclusive OR and assignment operator. C |= 2 is same as C = C | 2

Examples: Compound Assignment Operators

 variable op= expression; is equivalent to variable = variable op (expression);

 expression1 += expression2 is equivalent expression1 = expression1 + expression2

Statement with Simple

Assignment Operator

Equivalent with Compound

Assignment Operator

count_emp = count_emp + 1; count_emp += 1;

time = time - 1; time -= 1;

product = product * item; product *= item;

total = total / number; total /= number;

n = n % (x+1); n %= x+1;

23 Dr. Tarek Helmy

Prefix and Postfix Increment & Decrement

 C also provides the Decrement operator -- that can be used in either the prefix or

postfix position. i.e. let

 x = 3; // x is initialized to 3

 y = x--; // y is assigned 3 but x is now 2,

 y = --x; // y is assigned 1 and x is now 1

24 Dr. Tarek Helmy

Function to Compute the Factorial

25 Dr. Tarek Helmy

Decrement by 5

Display a Table of Values

Conversion of Celsius to Fahrenheit

26 Dr. Tarek Helmy

Textbook_Source_Code/Chapter 5/05_08.doc

Conditional Loops

 Conditional Loops: means it is not possible to determine the exact number

of loop repetitions before loop execution begins. Or

 The loop body executed repeatedly as long as the logical condition is true.

 Example of a conditional loop: input validation

printf("Enter number of students> ");

scanf("%d", &num_students);

while (num_students < 0) {

 printf("Invalid negative number; try again> ");

 scanf("%d", &num_students);

}

 This loop will be repeated as fare as the user did not input a positive

number.

 That means the condition of terminating the above loop is the invalid

(positive) input.

27 Dr. Tarek Helmy

Sentinel Controlled Loops

 In many programs, we may need to input a list of data values.

 Often, we don’t know the length of the list.

 We ask the user to enter a unique data value, called a sentinel

value, after the last data item.

 Sentinel Value

 An end marker that follows the last value in a list of data

 For readability, we used #define to name the SENTINEL

 The loop repetition condition terminates when the sentinel

value is read.

28 Dr. Tarek Helmy

Sentinel Controlled while Loop

#include <stdio.h>

#define SENTINEL -1 /* Marking end of input */

int main(void) { /* Compute the sum of test scores */

 int sum = 0; /* Sum of test scores */

 int score; /* Current input score */

 printf("Enter first score (%d to quit)> ", SENTINEL);

 scanf("%d", &score);

 while (score != SENTINEL) {

 sum += score;

 printf("Enter next score (%d to quit)> ", SENTINEL);

 scanf("%d", &score);

 }

 printf("\nSum of exam scores is %d\n", sum);

 return (0);

}

29 Dr. Tarek Helmy

Sentinel Controlled for Loop

#include <stdio.h>

#define SENTINEL -1 /* Marking end of input */

int main(void) { /* Compute the sum of test scores */

 int sum = 0; /* Sum of test scores */

 int score; /* Current input score */

 printf("Enter first score (%d to quit)> ", SENTINEL);

 for (scanf("%d", &score); score != SENTINEL;

 scanf("%d", &score)) {

 sum += score;

 printf("Enter next score (%d to quit)> ", SENTINEL);

 }

 printf("\nSum of exam scores is %d\n", sum);

 return (0);

}

30 Dr. Tarek Helmy

Infinite Loop on Faulty Input Data

 Reading faulty data or incorrect updating

the control variable can result in an infinite

loop.

scanf("%d", &score); /* read

integer */

 Suppose the user enters the letter X

Enter next score (-1 to quit)> X

scanf fails to read variable score as letter

X.

 Variable score is not modified in the

program

score != SENTINEL is always true

 Therefore, Infinite Loop

31 Dr. Tarek Helmy

#include <stdio.h>

void main()

{ int i=0,sum=0,a;

while(i<=9)

{ scanf(“&d”,&a) ;

sum+=a; }

printf(“%d”, sum);

}

//infinite loop

//never terminate,

// since i = 0 all the time

Detecting Faulty Input Data

 scanf can detect faulty input as follows:

status = scanf("%d", &score);

 If scanf successfully reads score then status is 1.

 If scanf fails to read score then status is 0.

 We can test status to detect faulty input.

 This can be used to terminate the execution of a loop.

 In general, scanf can read multiple variables.

 It returns the number of successfully read inputs.

32 Dr. Tarek Helmy

Terminating Loop on Faulty Input

 #include <stdio.h>

 #define SENTINEL -1 /* Marking end of input */

 int main(void) { /* Compute the sum of test scores */

 int sum = 0; /* Sum of test scores */

 int score; /* Current input score */

 int status; /* Input status of scanf */

 printf("Enter first score (%d to quit)> ", SENTINEL);

 status = scanf("%d", &score);

 while (status != 0 && score != SENTINEL) {

 sum += score;

 printf("Enter next score (%d to quit)> ", SENTINEL);

 status = scanf("%d", &score);

 }

 printf("\nSum of exam scores is %d\n", sum);

 return (0);

}

33 Dr. Tarek Helmy

Nested for Loops

 Consist of an outer loop with one or more inner loops.

 Each time the outer loop is repeated, the inner loops are fully executed.

 Example:

void stars(int n) {

 int i, j;

 for (i=1; i<=n; i++) {

 for (j=1; j<=i; j++) {

 printf("*");

 }

 printf("\n");

 }

}

 What is the output of this code?

o
u

te
r

lo
o

p

in
n

er
 lo

o
p

34 Dr. Tarek Helmy

Outer-Loop {

// body of outer-loop
 Inner-Loop {
 // body of inner-loop
 }
// continue body of outer-loop
}

Example: Nested for Loops

 Consist of an outer loop with one or more inner loops

 Each time the outer loop is repeated, the inner loops are reentered

and executed.

 Example:

void stars(int n) {

 int i, j;

 for (i=1; i<=n; i++) {

 for (j=1; j<=i; j++) {

 printf("*");

 }

 printf("\n");

 }

}

stars(5);

*
**

***** o

u
te

r
lo

o
p

in
n

er
 lo

o
p

35 Dr. Tarek Helmy

Example of a nested while Loop

#include <stdio.h>

int main() {

int i=1,j;

 while (i <= 5)

 {

 j=1;

 while (j <= i) {

 printf("%d ",j); j++;

 }

 printf("\n"); i++;

 }

return 0;

}

36 Dr. Tarek Helmy

Example of a nested while Loop

37 Dr. Tarek Helmy

Output:

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

#include <stdio.h>

int main() {

int i=1,j;

 while (i <= 5)

 {

 j=1;

 while (j <= i) {

 printf("%d ",j); j++;

 }

 printf("\n"); i++;

 }

return 0;

}

Nested if Statement inside Loop

/* day1: Sun is 1, Mon is 2, ..., Sat is 7 */

/* days: number of days in month */

void display_month(int day1, int days) {

 int i;

 printf(" Sun Mon Tue Wed Thu Fri Sat\n");

 for (i=1; i<day1; i++)

 printf(" "); /* spaces before day1 */

 for (i=1; i<=days; i++) {

 printf("%4d", i); /* print day number */

 if ((day1+i-1)%7 == 0){ /* end of week */

 printf("\n");

 }

 }

 printf("\n\n");

}

n
es

te
d

 if

o
u

te
r

fo
r

lo
o

p

38 Dr. Tarek Helmy

Displaying a Month

display_month(7, 30); /* function call */

 Sun Mon Tue Wed Thu Fri Sat

 1

 2 3 4 5 6 7 8

 9 10 11 12 13 14 15

 16 17 18 19 20 21 22

 23 24 25 26 27 28 29

 30

Output

39 Dr. Tarek Helmy

The do-while Statement

 As we have seen, both for and while statements

evaluate the loop condition before the execution of

the loop body.

 But, the do-while statement evaluates the loop

condition after the execution of the loop body.

 That means, in do-while statement, the loop

body executes at least one time before evaluating

the loop condition.

 Syntax of do-while:

Do {

 Loop body statement; /* Can be compound */

}

while (loop repetition condition);

40 Dr. Tarek Helmy

Example: Using do-while Loop

#include <conio.h>

int main() {

 char ch; /* Variable Declarations */

 /* do… while statement*/

 do {

 printf("Repeat again [y/n]? ");

 ch = getch(); /*in conio.h and used to read only char from keyboard*/

 printf("%c\n", ch); /* display character */

 } while (ch=='y'|| ch=='Y'); // condition

} /* as fare as the input is y or Y, the loop will be repeated */

41 Dr. Tarek Helmy

Example of Using do-while Loop

#include <stdio.h>

int main()

{

 int j=0;

 do {

 printf("Value of variable j is: %d\n", j);

 j++;

 }

 while (j<=3);

 return 0;

 }

42 Dr. Tarek Helmy

Value of variable j is: 0

Value of variable j is: 1

Value of variable j is: 2

Value of variable j is: 3

Example While vs. do..while loop in C

Using while loop:

#include <stdio.h>

int main() {

int i=0;

while(i==1) {

printf("while vs. do-while");

}

printf("Out of loop");

}

43 Dr. Tarek Helmy

Same example using do-while loop

#include <stdio.h>

int main() {

int i=0;

do {

printf("while vs. do-while\n");

}

while(i==1);

printf("Out of loop");

}

Example While vs. do..while loop in C

Using while loop:

#include <stdio.h>

int main() {

int i=0;

while(i==1) {

printf("while vs. do-while");

}

printf("Out of loop");

}

44 Dr. Tarek Helmy

while vs. do-while

Out of loop

Out of loop

Same example using do-while loop

#include <stdio.h>

int main() {

int i=0;

do {

printf("while vs. do-while\n");

}

while(i==1);

printf("Out of loop");

}

1. // Program to add numbers until the user enters zero

2. #include <stdio.h>

3. int main(){

4. double number, sum = 0; /* Variable Declarations */

5. // loop body is executed at least once

6. do {

7. printf("Enter a number: ");

8. scanf("%lf", &number);

9. sum += number;

10. }

11. while(number != 0.0);

12. printf("Sum = %.2lf",sum);

13. return 0;

14. }

Example: Using do-while

45 Dr. Tarek Helmy

Output:

Enter a number: 1.5

Enter a number: 2.4

Enter a number: -3.4

Enter a number: 4.2

Enter a number: 0

Sum = 4.70

/* get integer value between min and max */

int get_int (int min, int max) {

 int inval; /* input value between min and max */

 int status; /* returned by scanf */

 int error; /* error flag for bad input */

 char ch; /* character input to skip */

 do {

 printf("Enter integer from %d to %d> ", min, max);

 status = scanf("%d", &inval);

 error = 1; /* set error flag */

 if (status == 0) /* faulty input */

 printf("Invalid character %c\n", getchar());

 else if (inval < min || inval > max)

 printf("Number %d is out of range\n", inval);

 else error = 0; /* clear error flag */

 do ch = getchar(); /* used to read from keyboard */

 while (ch != '\n'); /* skip to end-of-line */

 } while (error);

 return inval; }

Using do-while to Validate Input

46 Dr. Tarek Helmy

Common Programming Errors (1/3)

 A loop executes one more time or one less time than

the expected.

 Example:

for (count = 0; count <= n; ++count)

 sum += count;

for (count = 1; count < n; ++count)

 sum += count;

 Checking loop boundaries

 Be carful while setting the initial and final values of the loop

control variable.

Executes n + 1 times

Executes n – 1 times

47 Dr. Tarek Helmy

Common Programming Errors (2/3)

 Do not confuse if and while statements

 if statement implements a decision step (choose one option)

 while statement implements a loop (repetition)

 In for loop: remember to end the initialization step and

the loop repetition condition with semicolon (;)

 Remember to use braces { and } around a loop body

consisting of multiple statements.

 Remember to provide a prompt for the user, when using a

sentinel-controlled loop.

 Make sure the sentinel value cannot be confused with a

normal data input.

48 Dr. Tarek Helmy

Common Programming Errors (3/3)

 Use do-while only when there is no possibility of zero

loop iterations.

 Do not use increment, decrement, or compound

assignment as sub-expressions in complex expressions.

a *= b + c; /* a = a*(b+c); */

 There is no shorter way to write: a = a*b + c;

 Be sure that the operand of an increment/decrement

operator is a variable.

z = ++j * k--; /* ++j; z=j*k; k--; */

49 Dr. Tarek Helmy

How to Debug and Test a Program?

 We have discussed before how to write, compile and execute C Programs.

 We have explained before three types of errors; syntax error, runtime error, and logical error.

 Today, we need to learn how to debug C program by using a debugger.

 Debugger: is a program that can run your program one line at a time to observe the effect of

each C statement on the variables.

 Debugging is the process of locating and removing program’s errors or abnormalities, which

is handled by software programmers. This can be done by:

1. Using a debugger program (i.e. gdb) as following:

 Select the Debug option while compiling the program.

 Launch the C debugger (i.e. gdb)

 Execute program one statement at a time,

 Watch and print the value of variables at runtime,

 Set breakpoints at selected statements, where you suspect errors.

 The debugger will stop at the break point, and you can examine the values of variables to

determine whether the program segment has executed correctly or not.

2. Using extra printf statements without a debugger

Insert extra printf statements that display intermediate results at critical points in C program.

50 Dr. Tarek Helmy

Steps to Debug a C Program using a gdb Debugger

 Step 1. Compile the C program with debugging option –g
 $ cc -g factorial.c /* file name is factorial.c */

 This allows the compiler to collect the debugging information.

 Step 2. Launch the C debugger (gdb) as shown below.
 $ gdb a.out /* creates a.out file which will be used for debugging */

 Step 3. Set up a break point inside C program using.

 break line_number; i.e. break 8;

 Step 4. Execute the C program in gdb debugger.

 run

 Step 5. Printing the variable values inside gdb debugger.

 Exemples: print i

 Step 6. you can use continue, next, and stepping over in gdb commands.

 There are three kind of gdb operations you can choose when the program stops at a

break point.

 c or continue: Debugger will continue executing until the next break point.

 n or next: Debugger will execute the next line as single instruction.

 s or step: Same as next, but does not treats function as a single instruction, instead

goes into the function and executes it line by line.

 51 Dr. Tarek Helmy

Is this Program correct?

52 Dr. Tarek Helmy

/* C program that calculates and prints the factorial of a number.

* However this C program contains some errors in it for debugging purpose*/

1. # include <stdio.h>

2. int main()

3. {

4. int i, num, j;

5. printf ("Enter the number: ");

6. scanf ("%d", &num);

7. for (i=1; i<num; i++)

8. j=j*i;

9. printf("The factorial of %d is %d\n",num,j);

10. }

• What is the problem in the above program?

• Can we apply the steps to debug this program?

Example: Debugging using gdb

 Step 1. Compile the C program with debugging option –g

 cc -g factorial.c

 Launch the C debugger (gdb) as shown below.

 gdb a.out

 Step 3. Set up a break point inside C program.

 Places break point in the C program, where you suspect errors.

 i.e. break 8 // While executing the program, the debugger will stop at the break
point, and gives you the prompt to debug.

 Step 4. Execute the C program in gdb debugger

 Run // it would execute until the first break point, and give you the prompt for
debugging.

 Step 5. Printing the variable values inside gdb debugger

 print i or print j or print num

 As you will see, in the factorial.c,

 we have not initialized the variable j.

 So, it gets garbage value resulting in a big numbers as factorial values.

53 Dr. Tarek Helmy

Dr. Tarek Helmy

The End!!

Thank you

Any Questions?

54

