
1 Dr. Tarek Helmy, ICS-KFUPM

Chapter 1:

Overview of Computers & Programming

Dr. Tarek Ahmed Helmy El-Basuny

Lectures 2~3

ICS-103

Computer Programming in C

2

What we have discussed last time?

 We introduced the followings:

 Contact data and setting the office hours,

 Course Information,

 References of the Course,

 Notes for Class Attendance,

 Course Outline: Topics to be covered during this course,

 Course objective and learning outcomes,

 Grading Polices,

 Advices for achieving high grade in the course,

 Quick Review of:

 What is a computer program?

 Imperative programming

 Declarative programming

 Similarity between a text book and a computer program

Topics to be Discussed in this Chapter

 Overview of Computer System and its Components:
 Hardware

 Software

 Computer’s Programming Languages
 High level Programming Language

 Assembly Programming Language

 Low Level (Machine) Programming Languages

 C Program Development Environment

 Edit, Compile, Link, Load

 Software Development Steps
 Analyze the problem.

 Design the algorithm to solve the problem.

 Implement the algorithm (write a program) using a certain language.

 Test and verify the program.

 Maintain and update the program if necessary

 Algorithm Representation
 Pseudo Code

 Flowcharts

3 Dr. Tarek Helmy, ICS-KFUPM

Computers

 A computer is a device that accepts information (in

the form of digitalized data) and process/manipulates

it based on a program (how the data is to be

processed) then outputs the result.

 Computers are useless without programming.

 Computer can deal with input data of different types

(i.e. numbers, letters, images, graphics, and sound).

 Programming languages (i.e. C) allow us to write

programs that tell the computer what to do and to

provide a way to communicate with computers.

 Programs and the input data are then converted to

machine instructions so the computer can

understand them.

4 Dr. Tarek Helmy, ICS-KFUPM

The computer receives

input, stores & processes it

and then outputs result.

Hardware & Software

 Any computing system has a combination of Hardware and

Software .

 Hardware is the tangible equipments used to perform the necessary

computations.

 i.e. Processor, Memory, Storage Devices, Monitor, Keyboard,

Mouse, Printer, etc.

 Software consists of the programs that enable us to solve problems

with a computer by providing it with a list of instructions to follow.

 Word Processing (i.e. Word, etc.), Internet Browsers (i.e. Chrome,

etc.), Operating systems (i.e. Windows , etc.)

5 Dr. Tarek Helmy, ICS-KFUPM

Computer’s Hardware (HW)

 Main Memory

 RAM: Random Access Memory:

 Memory that can be read or written in any order (as opposed to sequential

access memory),

 Volatile, its content will be lost once the power is disconnected.

 Used to store currently executing programs.

 ROM: Read Only Memory:

 Memory that cannot be written to, stores the BIOS routines.

 Non-volatile, its content will not be lost with power disconnection.

 Secondary Memory: Magnetic hard disks, Flash (solid state) disks, Optical disks (CDs

and DVDs).

 Central Processing Unit: Executes all computer operations and performs arithmetic and

logical operations.

 Input and Output Devices: Keyboard, Mouse, Scanner, Monitor, Printer, Microphone,

and Speakers.

 Networking Devices: Devices that allow computers to be linked and communicate with

each other to form computer networks.

6 Dr. Tarek Helmy, ICS-KFUPM

Components of a Computer System

7 Dr. Tarek Helmy, ICS-KFUPM

Memory

 Memory Cell (MC): An individual storage location in memory.

 Address of a MC: The relative position of a memory cell in the main memory.

 Content of a MC: Information stored in the memory cell (i.e. instruction or data).

 Every memory cell has content, whether we know it or not.

 Bit: The name comes from binary digit, either 0 or 1.

 Byte: A memory cell is actually a grouping of smaller units called bytes.

 A byte is made up of 8 bits.

 It is the amount of storage required to store a single character (i.e. letter H).

8 Dr. Tarek Helmy, ICS-KFUPM

b

a

• Each Memory Cell has an address and a value.

• The address is an integer number.

• The value can be an integer, a real number, or a character.

• One Byte = 8 bits.

• One Kilobyte (KB) = 210 = 1024 Bytes

• One Megabyte (MB) = 220 > 106 Bytes

• One Gigabyte (GB) = 230 > 109 Bytes

• One Terabyte (TB) = 240 > 1012 Bytes

• One Petabyte (PB) = 250 > 1015 Bytes

• One Exabyte (EB) = 260 > 1018 Bytes

• One Zettabyte (ZE) = 270 > 1021 Bytes

• One Yottabyte (YB)= 280 > 1024 Bytes

Understanding Memory

9 Dr. Tarek Helmy, ICS-KFUPM

Computer’s Software (SW)

 Software is a general term for the various kinds of programs used to

operate computers and related devices.

 Without software, computers would be useless.

 Based on the goal, computer’s software can be divided into:

 Operating System: controls the interaction between machine and user

(Examples: Windows, Mac, Linux, ios, Android, etc.)

 Manages the input and output devices.

 Communicates with computer’s user.

 Manages memory and processor time.

 Manages Storage Disks.

 Application Software: developed to assist a computer’s user in

accomplishing specific tasks. Example: Word, Excel, PPT, Internet

Explorer, etc.

10 Dr. Tarek Helmy, ICS-KFUPM

Computer Programming Languages

 High-level Language: is a programming language

designed to simplify computer programming.

 it combines algebraic expressions and high-level

commands that can be read by the human.

Examples: Fortran, C, C++, Prolog, Perl, and Java.

 Assembly Language: is programming language that uses

symbols (called mnemonics) that correspond to machine

language instructions.

Very close to the actual machine language.

An assembly program written for one type of CPU

won't run on another.

 Machine Language: Programming language that can be

directly understood by a computer without conversion

(compilation).

 It is the native binary language and is difficult to be read

and understood by humans.

 There is a different machine language for every

processor family.

11 Dr. Tarek Helmy, ICS-KFUPM

http://www.webopedia.com/TERM/P/program.html
http://www.webopedia.com/TERM/R/run.html

The Compiler

 Compilation is the process of translating the source code (high-level) into

executable code (machine level).

 Source file: contains the original program code.

 A Compiler turns the Source File into an Object File

 Object file: contains low level instructions which can be understood by

the CPU.

 A Linker turns the Object File into an Executable

 Executable object file: It contains machine code that can be directly

loaded into memory and then executed.

 The linker links together a number of object files to produce a binary

file which can be executed.

 Integrated Development Environment (IDE): a SW package that

combines simple text editor with a compiler, linker, loader, and debugger

tool.

 For example, GCC, Borland C, Eclipse or Visual Studio, etc.

12 Dr. Tarek Helmy, ICS-KFUPM

C Program Development Environment

Edit the program and

store it on disk.

Preprocessor handles the

line code that starts with ‘#

Loader puts program

in memory.

CPU takes each instruction

and executes it, possibly

storing new data values as

the program executes.

Compiler creates object

code and stores it on disk.

Linker links the object

code with the libraries.

Loader

Primary Memory

Compiler

Editor

Preprocessor

Linker

Primary Memory

.

.

.

.

.

.

.

.

.

Disk

Disk

Disk

CPU

Disk

Disk

Dr. Tarek Helmy, ICS-KFUPM 13

Compilation Process of a C Program

Dr. Tarek Helmy, ICS-KFUPM 14

Writing and Running C Programs

#include <stdio.h>

/* The simplest C Program */

int main(int argc, char **argv
)

{

 printf(“Hello World\n”);

 return 0;

}

• Write the source code program using an editor such as

emacs and save it as file e.g. my_program.c

• The compile converts the program from source to an

“executable” or “binary”:

my_program

$ gcc -Wall –g my_program.c –o my_program

tt.c: In function `main':

tt.c:6: parse error before `x'

tt.c:5: parm types given both in parmlist and separately

tt.c:8: `x' undeclared (first use in this function)

tt.c:8: (Each undeclared identifier is reported only once

tt.c:8: for each function it appears in.)

tt.c:10: warning: control reaches end of non-void functio
n

tt.c: At top level:

tt.c:11: parse error before `return'

• If the Compiler gives any errors and/or

warnings; then re-edit the source file again to

fix it, and re-compile it again.

• Run it and see if it works

• Resolves external references to produce the

executable program through Linking process.

Dr. Tarek Helmy, ICS-KFUPM 15

A Quick Digression About the Compiler

#include <stdio.h>

/* The simplest C Program *
/

int main(int argc, char **a
rgv)

{

 printf(“Hello World\n”);

 return 0;

}

my_program

__extension__ typedef unsigned long long int __dev_t;

__extension__ typedef unsigned int __uid_t;

__extension__ typedef unsigned int __gid_t;

__extension__ typedef unsigned long int __ino_t;

__extension__ typedef unsigned long long int __ino64_t;

__extension__ typedef unsigned int __nlink_t;

__extension__ typedef long int __off_t;

__extension__ typedef long long int __off64_t;

extern void flockfile (FILE *__stream) ;

extern int ftrylockfile (FILE *__stream) ;

extern void funlockfile (FILE *__stream) ;

int main(int argc, char **argv)

{

 printf(“Hello World\n”);

 return 0;

}

Compilation occurs in two steps:

“Preprocessing” and “Compiling”

In Preprocessing, source code is “expanded” into a larger

form that is simpler for the compiler to understand.

Any line that starts with ‘#’ is a line that is interpreted by

the Preprocessor.

• Include files are “pasted in” (#include)

• Macros are “expanded” (#define)

• Comments are stripped out (/* */ , //)

• Continued lines are joined (\)

Preprocess

Compile

The compiler then converts the resulting text into binary

code so that the CPU can run it.

\ ?

Why ?

Dr. Tarek Helmy, ICS-KFUPM 16

Flow of Information During Program Execution

17 Dr. Tarek Helmy, ICS-KFUPM

Steps of Handling a Problem

1. Problem identification: Specifies the problem that should be solved on

the computer.

2. Analysis: Understand the problem and identify the required inputs,

outputs, and computation.

3. Design: Design and develop the list of steps called algorithm to

solve the problem.

4. Implementation: Write the algorithm as a program using a certain

programming language.

5. Testing: Test and verify that the program actually works as desired.

6. Maintenance: Maintain any undetected errors and keep it up-to-date.

18 Dr. Tarek Helmy, ICS-KFUPM

Example: Converting Miles to Kilometers

 Problem example:

 You have been asked to convert a list of miles to kilometers.

 Since you like programming, you decide to write a C program to do the job.

2. Analysis: Outline the problem and its requirements, What is the information

that we need to process in order to find the solution? i.e., in the above

problem:

 We need to receive miles as input

 We need to output kilometers

 We know that 1 mile = 1.609 kilometers

3. Design: set the algorithm to solve the problem.

1. Get distance in miles as input

2. Convert it to kilometers using a certain formula.

3. Display kilometers as output

19 Dr. Tarek Helmy, ICS-KFUPM

4. Implementation in C Language

20 Dr. Tarek Helmy, ICS-KFUPM

Miles to Kilometers

5. Test

 We need to test the previous program to make sure it works.

 We run our program and enter different values and make sure

the output is correct.

6. Maintenance

 Next time, your boss gets a contract with NASA, so he wants

you to add support for converting to Astronomical Unit (AU),

where AU is the Earth's average distance from the Sun.

 1 Astronomical Unit = 149,597,871 Kilometers

21 Dr. Tarek Helmy, ICS-KFUPM

Dr. Tarek Helmy, ICS-KFUPM 22

Representing Algorithms

 Formulas

 English description of the algorithm

 Pseudo-code

 Flowcharts

 High-level programming language

More

precise

More easily
expressed

 Algorithm: A list of ordered steps for solving a problem in

a specified time.

• An algorithm can be represented using:

Pseudo Code & Flowchart

 Pseudo Code: A combination of English phrases and language

constructs to describe the algorithm steps.

 Flowchart: A diagram that shows the step-by-step execution of a

program.

23 Dr. Tarek Helmy, ICS-KFUPM

Why use Pseudo Code?

 Pseudo code is an artificial and informal language that helps programmers develop

algorithms.

 Pseudo Code: Written as a combination of English and programming constructs

 Based on selection (if, then, else, switch) and iteration (for, while, repeat)

constructs in high-level programming languages.

 The benefits of pseudo code are:

 It enables the programmer to concentrate on the algorithm without worrying about

all the syntactic details of a particular programming language.

 You can write pseudo code without even knowing what programming language you

will use for the final implementation.

 Pseudo code cannot be compiled or executed,

 It does not follow syntax rules.

 It is simply an important step in producing the final code.

 Pseudo Code Example:

Input Miles

Kilometers = Miles * 1.609

Output Kilometers

24 Dr. Tarek Helmy, ICS-KFUPM

Example: Pseudo Code

 Problem: Calculate your final grade for ICS 103.

 Understand the problem:

 Get different grades as inputs and then compute the final grade as an output.

 Analyze the problem:

 We need to input grades for exams, labs, quizzes.

 We need to know the percentage each part counts for.

 We need to use a formula for calculating the final grade.

 Then we need to output the final grade.

 Design the algorithm

1. Get the grades: exams, quizzes, assignments, and labs.

2. Grade = 0.25 * Midterm Exam + 0.3 * Final Exam + 0.2 * Quizzes + 0.5 *

Assignments + 0.2 * Lab

3. Output the Grade

 Implement and Test:

 Learn how to program in C,

 Write the program, then Input some test values,

 Calculate and check the final grade.

25 Dr. Tarek Helmy, ICS-KFUPM

Flowcharts

Processing
Start or Terminal

Decision
Document

Display Manual Input

26 Dr. Tarek Helmy, ICS-KFUPM

Data Flow

 A Flowchart is graphical representation of an algorithm.

 Written as a combination of the following graphical notations:

Example of a Flowchart

Start

Get Grades and

 percentages

Calculate

Final grade

Display

Grade

End

27 Dr. Tarek Helmy, ICS-KFUPM

Flow Chart Representation: Examples

Dr. Tarek Helmy, ICS-KFUPM 28

Dr. Tarek Helmy, ICS-KFUPM

The End!!

Thank you

Any Questions?

29

