
1 Dr. Tarek Helmy, ICS-KFUPM

Chapter 3:

Top-Down Design with Functions

Dr. Tarek Ahmed Helmy El-Basuny

Lectures 7-9

ICS-103

Computer Programming in C

 Building Programs from Existing Information

 Library Functions and Code Reuse

 Top-Down Design and Structure Charts

 Introduction of Functions in C

 Function Prototype, and Definition

 Functions Without Arguments

 Placement of Functions in a Program

 Execution Order of Functions in the C program

 Functions with Arguments

 Function with Input Argument but no Return Value

 Functions with Input Arguments and a Single Return Value

 Formal and Actual Parameters

 Testing Functions

 Function Data Area

 Advantages of Functions

 Common Programming Errors with Functions call

 Problem Solving Examples

2 Dr. Tarek Helmy, ICS-KFUPM

Outline of Ch. 3 Topics

Recall: Software Development Steps

1. Specify/Identify the problem,

2. Analyze/Understand the problem (input and output),

3. Design the algorithm to solve the problem,

4. Implement/Code the algorithm using a programming

language,

5. Test and verify the implemented program,

6. Maintain and update the program.

3 Dr. Tarek Helmy, ICS-KFUPM

Case Study: Computing the Weight of a Batch of Flat Washers

 Problem: assume that you work for a hardware company that

manufactures flat washers. To estimate the shipping costs, your

company asked you to write a C program that computes the weight of

a specified quantity of flat washers.

 Analysis: the flat washer resembles a small donut. To compute the

weight of a single flat washer, you need to know is rim-area, its

thickness, and the density of the material used in its construction.

 Inputs:

 Hole diameter, edge diameter, thickness,

 Density of the material, quantity of the washers made.

 Output:

 Weight (of a batch of flat washers)

4 Dr. Tarek Helmy, ICS-KFUPM

2. Analysis: Computing the Area and Weight

rim area = area of the outer circle- area of the hole (

inner circle)

rim area = (d2/2)2 – (d1/2)2

unit weight = rim area × thickness ×

density

5 Dr. Tarek Helmy, ICS-KFUPM

Total weight = unit weight × quantity

3. Designing The Algorithm

1. Read the washer's inner diameter, outer diameter, and

thickness.

2. Read the material density and quantify of washers.

3. Compute the rim area.

4. Compute the weight of one flat washer.

5. Compute the weight of the batch of washers.

6. Display the total weight of the batch of washers.

6 Dr. Tarek Helmy, ICS-KFUPM

4. Implement Flat Washer C Program

7 Dr. Tarek Helmy, ICS-KFUPM

Variables Declaration

Pre-Processor Directives

Comments

Flat Washer Program (Cont'd)

8 Dr. Tarek Helmy, ICS-KFUPM

Reading the input

Computing
statements

Flat Washer Program (Cont'd)

5. Testing:
• Run the program with inner, outer diameters, thickness, and densities that le

ad to calculations of the weight.
• Verify the correctness of the weight.

9 Dr. Tarek Helmy, ICS-KFUPM

Testing

Output

Library Functions and Code Reuse

 The primary goal of software engineering is to write error-free code.

 Reusing code that has already been written and tested by

professional programmers is one way to achieve this.

 C promotes code reuse by providing library functions. i.e.

 Input/Output functions: printf, scanf , etc.

 Mathematical functions: sqrt, exp, log, etc.

 String functions: strlen, strcpy, strcmp, etc.

 Each of the standard library function can be called by writing its name

and passing to it the required arguments.

 i.e. y=sqrt (x);

 Next slide show some of the C standard library functions.

 The appendix of the text book lists all C standard library functions.

10 Dr. Tarek Helmy, ICS-KFUPM

Some Mathematical Library Functions

Function Header file Argument Result Example

abs(x) <stdlib.h> int int abs(-5) is 5

fabs(x) <math.h> double double fabs(-2.3) is 2.3

sqrt(x) <math.h> double double sqrt(2.25) is 1.5

exp(x) <math.h> double double exp(1.0) is 2.71828

log(x) <math.h> double double log(2.71828) is 1.0

log10(x) <math.h> double double log10(100.0) is 2.0

pow(x,y) <math.h> double, double double pow(2.0,3.0) is 8.0 returns xy

sin(x) <math.h> double double sin(PI/2.0) is 1.0

cos(x) <math.h> double double cos(PI/3.0) is 0.5

tan(x) <math.h> double double tan(PI/4.0) is 1.0

ceil(x) <math.h> double double ceil(45.2) is 46.0

floor(x) <math.h> double double floor(45.2) is 45.0

11 Dr. Tarek Helmy, ICS-KFUPM

Using Math Library Functions

 We can use the C math function (#include <math.h>)to

calculate roots of a quadratic equation ax2 + bx + c = 0

 root1 = (-b + sqrt(b*b – 4*a*c))/(2.0 * a);

 root2 = (-b - sqrt(b*b – 4*a*c))/(2.0 * a);

 We can use pow(b,2)to calculate b*b;\

 delta = pow(b,2)– 4*a*c;

 root1 = (-b + sqrt(delta))/(2.0 * a);

 root2 = (-b – sqrt(delta))/(2.0 * a);

 We can use C math function(#include<math.h>)to compute the

unknown side of a triangle

 a2 = b2 + c2 – 2 b c cos()

a = sqrt(b*b + c*c -

 2*b*c*cos(alpha));

 alpha must be in radians

12 Dr. Tarek Helmy, ICS-KFUPM

Top-Down Design

 Algorithms needed to solve problems are often complex.

 To solve a problem, the programmer must break it into simple sub-

problems at a lower level.

 This process is called top-down design.

 Example:

 You have been asked to draw a simple diagram that

consists of a circular shape, a triangle shape and a triangle

without its base. you can divide the problem into three

sub-problems.

13 Dr. Tarek Helmy, ICS-KFUPM

Dr. Tarek Helmy, ICS-KFUPM 14

Divide and Conquer

 If the problem is complex, then divide it into sub-problems that we can

handle:

 Applies the concept of abstraction

 The divide-and-conquer approach can be applied over and over

again until each subtask is manageable.

r2

“Main Task”

Subtask1 Subtask2 Subtask3

r1 r3

“Result”

“Function 1” “Function 2”

“Function 3”

Partition

Combine

Structure Charts

 Structure Charts show the relationship between the original problem

and its sub-problems.

 The sub-problem (Draw a triangle) can also be refined to its own sub-

problems at level 2.

15 Dr. Tarek Helmy, ICS-KFUPM

 One way to achieve top-down design is to define a function for

each sub-program and then call them from the main function.

 For example, one can define functions to draw a circle, intersecting

lines, base line, and a triangle.

 To draw a circle, call the function:

 draw_circle(); /* No argument */

 To draw a triangle, call the function:

 draw_triangle(); /* No argument */

 The above draw functions have no arguments.

16 Dr. Tarek Helmy, ICS-KFUPM

Top-Down Design

Introduction to Functions in C

 A function is a group of statements that together perform a task.

 A function accepts zero or more argument values, produces a result value (it

may do nothing), and returns zero or more results.

 Functions can be written and tested separately

 Functions can be reused by other programs

 All functions defined at “top level” of C programs

 Functions in C do not allow other functions to be declared within them

• We can not nest functions in C.

 Can be linked by any other program that knows the function prototype

 Functions could be

 Pre-defined library functions (e.g., printf, sin, sqrt, etc.) or

 Programmer-defined functions (e.g., factorial, draw_circle, etc.)

17 Dr. Tarek Helmy, ICS-KFUPM

Example: Pre-defined library Functions

#include <math.h>

 sin(x) // radians

 cos(x) // radians

 tan(x) // radians

 atan(x)

 atan2(y,x)

 exp(x) // ex

 log(x) // loge x

 log10(x) // log10 x

 sqrt(x) // x  0

 pow(x, y) // xy

 ...

#include <stdio.h>

 printf()

 fprintf()

 scanf()

 sscanf()

 ...

#include <string.h>

 strcpy()

 strcat()

 strcmp()

 strlen()

 ...

18 Dr. Tarek Helmy, ICS-KFUPM

Function Definitions

 Function definition format

return-value-type function-name(parameter-list)

{

 declarations and statements

}

 Function-name: any valid identifier

 Return-value-type: data type of the result (the default type is int)

 void indicates that the function returns nothing.

 Parameter-list: comma separated list of declares parameters.

 A type must be listed explicitly for each parameter unless, the parameter is of type int.

 void can be used if there is no parameters.

 Declarations and statements: {Function body}

 Local variables can be declared inside the braces {Function body}

 Functions can not be defined inside other functions.

 Returning control

 If nothing returned

• return; or, until reaches right brace

 If something returned

• return expression;

19 Dr. Tarek Helmy, ICS-KFUPM

Nesting Functions

 Can we Nest functions (can we place the code for one function inside another

function)?

 The answer is NO!

 We can utilize (call) other functions inside a function, but we cannot create a

new function there.

 // Here is pseudo code of the correct layout of two functions

 function1()

 {

 code;

 code;

 code;

 }

 function2()

 {

 code;

 code;

 code;

 }

20 Dr. Tarek Helmy, ICS-KFUPM

// INCORRECT layout of two functions

 function1()

 {

 code;

 code;

 code;

 function2()

 {

 code;

 code;

 code;

 }

 }

Example: User-defined Function

return_type function_name (parameters)

{

 declarations;

 statements;

}

int my_add_func(int a, int b)

{

 int sum;

 sum = a + b;

 return sum;

}

21 Dr. Tarek Helmy, ICS-KFUPM

Function Definition and Call: Example

 A function definition has the following syntax:

 type function name(parameter list) {

 local declarations

 sequence of statements

 }

 For example: Definition of a function that computes the absolute value of an

integer:

 int absolute(int x)

 {

 if (x >= 0) return x;

 else

 return -x;

}

 A function call has the following syntax:

 function name(argument list);

Example: int distance = absolute(-5);

 The result of a function call is a value of type <type>

22 Dr. Tarek Helmy, ICS-KFUPM

Functions Without Arguments

 Functions with no parameters (arguments) can be used in C. Usually they will not return

a value but carry out some operation.

 Example:

#include<stdio.h>

void area(); // Prototype Declaration

void main()

{

area(); //function call

}

void area() //function definition

{

 float area_circle;

 float rad;

 printf("\nEnter the radius: ");

 scanf("%f", &rad);

 area_circle = 3.14 * rad * rad ;

 printf("Area of Circle = %f",area_circle);

}

23 Dr. Tarek Helmy, ICS-KFUPM

Output

Enter the radius : 3

Area of Circle = 28.260000

Value Returning Functions

 Function returns a single value to the calling program.

 Function definition declares the type of value to be returned.

 A return expression; statement is required in the function definition

 The value returned by a function can be assigned to a variable, printed, or
used in an expression.

int fact(int n)

{

 int factres = 1;

 while(n>1)

 {

 factres = factres*n;

 n--;

 }

 return(factres);

}

n!=n*(n-1)*…*1, 0! = 1 by definition

Return Type
Function name

Parameter Declarations
Declarations

Statements

Void Functions

 A void function does not return a value to the calling program

 A void function may be called to

 Perform a particular task (clear the screen)

 Modify data

 Perform input and output

 A return; statement can be used to exit from function without returning any value.

 Write a program to generate the following output?

*

**

for (i=1; i<=5; i++) {

 for (j=1; j<=i; j++)

 printf(“*”);

 printf(“\n”);

}

#include <stdio.h>

void print_i_star(int i);

main()

{

 int i;

 for (i=1; i<=5; i++) {

 print_i_star(i);

 }

}

void print_i_star(int i)

{

 int j;

 for (j=1; j<=i; j++)

 printf(“*”);

 printf(“\n”);

 return;

}

Function Prototype

 A function must be declared before it can be used in a program.

 A function prototype tells the C compiler:

1. The result data type that the function will return.

2. The function name.

3. Information about the arguments that the function expects.

 Example: double myfunction(int n);

 This prototype specifies that in this program, there is a function named

"myfunction" which takes a single integer argument "n" and returns a

double.

 A function prototype tells the compiler what arguments the function takes and

what it returns, but NOT what it does.

 Usually function prototypes should be before the main to tell the compiler what

functions you are planning to use.

 Function prototypes for draw_circle and sqrt:

 void draw_circle(void);

 double sqrt(double x);

26 Dr. Tarek Helmy, ICS-KFUPM

27

Draws
This
Stick

Figure

Function Prototypes

Function Prototypes

Before main function

27 Dr. Tarek Helmy, ICS-KFUPM

Function Definition

 A function definition tells the compiler what the function does

 Function Header: Same as the prototype, except it does not end

with a semicolon;

 Function Body: enclosed by { and } containing variable

declarations and executable statements.

No Argument
No Result

28 Dr. Tarek Helmy, ICS-KFUPM

PLACEMENT OF FUNCTION DEFINITIONS AFTER THE MAIN

FUNCTION OF A PROGRAM

29 Dr. Tarek Helmy, ICS-KFUPM

30 Dr. Tarek Helmy, ICS-KFUPM

PLACEMENT OF FUNCTION DEFINITIONS AFTER THE MAIN

FUNCTION OF A PROGRAM

Placement of Functions in a Program

 A function in C is a block of code that takes as input (parameters values) from the

caller function, does some computation, and (usually) returns the result to the

caller function, or it may return nothing.

 Declare all function prototypes at the top (after #include and #define).

 Function prototype In C, specifics RETURN_TYPE, Name_of_Function

and (the list of parameters);

 This information is communicated to the compiler for later usage.

 This is followed by the main function.

 The main function is always the first code executed when a program starts.

 Define all of the required functions after the main function.

 As long as a function’s prototype appears before it is used, it doesn’t matter

where in the file it is defined.

 Ordering of functions in a program

 The order of functions inside a program is arbitrary. It does not matter if you

put function one at the top of the file and function two at the bottom, or vice

versa.

 The order we define functions in a program does not have any impact on how

they are executed.

31 Dr. Tarek Helmy, ICS-KFUPM

Execution Order of Functions

 Program execution always starts in main function.

 When a function is "called" the program "leaves" the current section of code

and begins to execute the first line inside the function.

 Thus the functions "flow of control" is:

 The program comes to a line of code containing a "function call".

 The program enters the function (starts at the first line in the function code).

All instructions inside of the function are executed from top to bottom.

After executing of a function, the control goes back to where it started from.

Any data computed and RETURNED by the function is used in place of the

function in the original line of code.

function call

32 Dr. Tarek Helmy, ICS-KFUPM

Execution Order of Functions

1. main() {

2. display();

3. }

4. void mumbai() {

5. printf("In mumbai");

6. }

7. void pune() {

8. india();

9. }

10. void display() {

11. pune();

12. }

13. void india() {

14. mumbai();

15. }

33 Dr. Tarek Helmy, ICS-KFUPM

• In this program we have written functions in the following

order:-

• main()

• mumbai()

• pune()

• display()

• india()

• However functions are called in the order we call them as

following:-

• main()

• display()

• pune()

• india()

• mumbai().

• Execution order of functions is determined by the order of the

function call statements.

Functions with Arguments

 We use arguments to communicate with the function.

 Two types of function arguments:

 Input arguments: pass data from the caller (main) to the called

function.

 Output arguments: pass results from the called function back to

the caller [will be discussed in chapter 6].

 Types of Functions:

1. No input arguments and no value returned, we discussed before.

2. Input arguments, but no value returned, will be discussed today.

3. Input arguments and single value returned, will be discussed today.

4. Input arguments and multiple values returned [will be discussed in

chapter 6].

34 Dr. Tarek Helmy, ICS-KFUPM

Function with Input Argument but no Return Value

 The function which accepts argument but it does not return a value back to

the calling function.

 It is (One-way) type communication function.

 Generally Output is printed in the called function.

 Here area is called function and main is calling function.

 Example:

1. #include<stdio.h>

2. #include<conio.h>

3. void area(float rad); // Prototype Declaration

4. main() { // main function

5. float rad; // variable declaration

6. printf("nEnter the radius : ");

7. scanf("%f",&rad);

8. area(rad); // function call

9. getch();

10.}

11.void area(float rad) { //area function with input argument but no return value

12. float ar;

13.ar = 3.14 * rad * rad ;

14.printf("Area of Circle = %f",ar);
15.}

35 Dr. Tarek Helmy, ICS-KFUPM

Formal and Actual Parameters

 When we create a function, it should represent a "generic" form that can be

applied in many circumstances.

 Formal Parameter

 An identifier that represents a parameter in a function prototype or

definition: i.e:

 void print_rbox(double rnum);

 double average_grade (list_of_grades) { body }

 The formal parameters are rnum and list_of_grades

 Actual Parameter (or Argument)

 A value/expression used inside the parentheses of a function call: i.e.:

 print_rbox(5); // function call

midterm_grades = ... // if we created array of grades

print average_grade(midterm_grades)

 Actual arguments are the value of the formal parameters (5 and midterm_grades)

 Formal parameters must match with actual parameters in order, number and data

type.

 If the type is not the same, type conversion will be applied. But this might cause

some errors (doubleint) so you need to be careful!

36 Dr. Tarek Helmy, ICS-KFUPM

Functions with Input Arguments and a Single Result Value

 Functions accepts argument and returns a value back to the calling

function.

 It can be termed as Two-way Communication between calling
function and called function.

Example:

/* area of a circle */

Double circle_area(double r)

{

 return (PI * r * r);

}

/* diagonal of rectangle */

Double rect_diagonal(double l, double w)

{

 double d = sqrt(l*l + w*w);

 return d;

}

 Functions in the math library are of this category

37 Dr. Tarek Helmy, ICS-KFUPM

Testing Functions Using Drivers

 A function is an independent program module.

 It should be tested separately to ensure correctness.

 Driver:

 A short function written to test another function by defining its

arguments, calling it, and displaying its result.

 A driver function is written to test another function

 Input or define the arguments

 Call the function

 Display the function result and verify its correctness

 We can use the main function as a driver function

38 Dr. Tarek Helmy, ICS-KFUPM

Testing Function rect_diagonal

/* Testing rect_diagonal function */

int

main(void)

{

 double length, width; /* of a rectangle */

 double diagonal; /* of a rectangle */

 printf("Enter length and width of rectangle> ");

 scanf("%lf%lf", &length, &width); /* read multiple values*/

 diagonal = rect_diagonal(length, width); /* call to test */

 printf("Result of rect_diagonal is %f\n", diagonal);

 return 0;

}

39 Dr. Tarek Helmy, ICS-KFUPM

double rect_diagonal(double l, double w)

{

 double d = sqrt(l*l + w*w);

 return d;

}

 In the Last class, we discussed:

 Building Programs from Existing Information

 Library Functions and Code Reuse

 Top-Down Design and Structure Charts

 Introduction of Functions in C

 Function Prototype, and Definition

 Functions Without Arguments

 Placement of Functions in a Program

 Execution Order of Functions in the C program

 Functions with Arguments

 Function with Input Argument but no Return Value

 Functions with Input Arguments and a Single Return Value

 Formal and Actual Parameters

 Testing Functions

 In today’s class, we will discuss:

 Function Data Area

 Advantages of Functions

 Common programming Errors with Functions call

40 Dr. Tarek Helmy, ICS-KFUPM

Outline of Ch. 3 Topics

The Function Data Area

 Each time a function call is executed,

 An area of memory is allocated for formal parameters and

local variables.

 Local Variables: variables declared within a function body.

 Function Data Area: Formal Parameters + Local Variables

 Allocated when the function is called

 Can be used only from within the function

 No other function can see them

 The function data area is lost when a function returns.

 It is reallocated when the function is called again.

41 Dr. Tarek Helmy, ICS-KFUPM

Example of Function Data Areas

Function
main

Data Area

length

1.5

width

2.0

diagonal

?

Function
rect_diagonal

Data Area

l

1.5

w

2.0

d

2.5

passed

passed

returned

42 Dr. Tarek Helmy, ICS-KFUPM

double rect_diagonal(double l, double w)

{

 double d = sqrt(l*l + w*w); //d is local variable

 return d;

}

Int main(void)

{ double length, width; diagonal;

 printf("Enter length and width of rectangle> ");

 scanf("%lf%lf", &length, &width);

 diagonal = rect_diagonal(length, width);

 printf("Result of rect_diagonal is %f\n", diagonal);

 return 0;

}

Argument List Correspondence (NOT rule)

 The Number of actual arguments used in a call to a function must

be equal to the number of formal parameters listed in the function

prototype.

 The Order of the actual arguments used in the function call must

correspond to the order of the parameters listed in the function

prototype.

 Each actual argument must be of a data Type that can be assigned to

the corresponding formal parameter with no unexpected loss of

information.

43 Dr. Tarek Helmy, ICS-KFUPM

Advantages of Functions

 A large problem can be better solved by breaking it up into several

functions (sub-problems).

 Easier to write and maintain small functions than writing one large

main function.

 Once you have written and tested a function, it can be reused as a

building block for a large program.

 Well written and tested functions reduce the overall length of the

program and the chance of error.

 Useful functions can be bundled/archived into libraries and reused.

44 Dr. Tarek Helmy, ICS-KFUPM

Programming Style

 Each function should begin with a comment that describes its

purpose, input arguments, and result.

 Include comments within the function body to describe local variables

and the algorithm steps.

 Place prototypes for your own functions in the source file before

the main function.

 Place the function definitions after the main function in any order

that you want.

45 Dr. Tarek Helmy, ICS-KFUPM

Common Programming Errors

 Remember to use #include directive for every standard library from

which you are using functions.

 For each function call:

 Provide the required Number of arguments,

 Make sure the Order of arguments is correct,

 Make sure each argument is the correct Type or that conversion

to the correct type will not lose information.

 Document and test every function you write.

 Do not call a function and pass arguments that are out of range.

 A function will not work properly when passing invalid arguments.

 I.e. calling sqrt(-1.0) with -1.0 as argument will cause an error.

46 Dr. Tarek Helmy, ICS-KFUPM

Problem Solving 1: Formulating Algorithm with Top-Down

 The problem is:

Develop a class-averaging program that will:

 Process an arbitrary number of grades each time the program runs and

calculates the average score.

 The number of students is unknown.

How will the program know to end?

 We can use sentinel/flag value to Indicates “end of data entry.”

 Loop ends when user inputs the sentinel value.

 Sentinel value chosen so it cannot be confused with a regular input (such

as -1 in this case).

 Top-down design

 Begin with a pseudo-code representation of the top:

 Determine the class average for the quiz

 Divide top into smaller tasks and list them in order:

 Initialize variables

Input, sum and count the quiz grades

Calculate and print the class average

 Programs have three phases:

 Initialization: initializes the program variables.

 Processing: inputs data values and adjusts program variables

accordingly.

 Termination: calculates and prints the final results.

Problem Solving 1: Formulating Algorithm with Top-Down

 Initialize variables as following:

 Initialize total to zero

Initialize counter to zero

 Refine Input, sum and count the quiz grades to

 Input the first grade (possibly the sentinel)

 While the user has not as yet entered the sentinel

 Add this grade into the running total

 Add one to the grade counter

 Input the next grade (possibly the sentinel)

 Refine Calculate and print the class average

 If the counter is not equal to zero

 Set the average to the total divided by the counter

 Print the average.

else

 Print “No grades were entered”

Problem Solving 1: Formulating Algorithm with Top-Down

 1 /*

 2 Class average program with

 3 sentinel-controlled repetition */

 4 #include <stdio.h>

 5

 6 int main()

 7 {

 8 float average; /* new data type */

 9 int counter, grade, total;

 10

 11 /* initialization phase */

 12 total = 0;

 13 counter = 0;

 14

 15 /* processing phase */

 16 printf("Enter grade, -1 to end: ");

 17 scanf("%d", &grade);

 18

 19 while (grade != -1) {

 20 total = total + grade;

 21 counter = counter + 1;

 22 printf("Enter grade, -1 to end: ");

 23 scanf("%d", &grade);

 24 }

Problem Solving 1: C Program

 Calculate Average

 Print Results

 Program Output

25

 26 /* termination phase */

 27 if (counter != 0) {

 28 average = (float) total / counter;

 29 printf("Class average is %.2f", average);

 30 }

 31 else

 32 printf("No grades were entered\n");

 33

 34 return 0; /* indicate program ended successfully */

 35 }

Enter grade, -1 to end: 75

Enter grade, -1 to end: 94

Enter grade, -1 to end: 97

Enter grade, -1 to end: 88

Enter grade, -1 to end: 70

Enter grade, -1 to end: 64

Enter grade, -1 to end: 83

Enter grade, -1 to end: 89

Enter grade, -1 to end: -1

Class average is 82.50

Problem Solving 1: C Program

 Problem

 A college has a list of test results (1 = pass, 2 = fail) for 10

students.

Write a program that analyzes the results.

 If more than 8 students pass, print "Raise Tuition"

 Notice that

 The program must process 10 test results

 That means counter-controlled loop will be used.

 Two counters can be used

 One for number of passes, and one for number of fails

 Each test result is a number: either a 1 or a 2

 If the number is not a 1, we assume that it is a 2.

Problem Solving 2: Formulating Algorithm with Top-Down

 Top level outline

 Analyze exam results and decide if tuition should be raised

 Initialize variables

 Initialize passes to zero

 Initialize failures to zero

 Initialize student counter to one

 Input the ten quiz grades and count passes and failures:

 While student counter is less than or equal to ten

• Input the next exam result

 If the student passed

 Add one to passes

 Else Add one to failures

• Add one to student counter

 Print a summary of the exam results and decide if tuition should be raised:

 Print the number of passes

 Print the number of failures

 If more than eight students passed Print “Raise tuition”

Problem Solving 2: Formulating Algorithm with Top-Down

 Initialize variables

 Input data and

count

passes/failures

 Print results

 2 /* Analysis of examination results */

 3 #include <stdio.h>

 4

 5 int main()

 6 {

 7 /* initializing variables in declarations */

 8 int passes = 0, failures = 0, student = 1, result;

 9

 10 /* process 10 students; counter-controlled loop */

 11 while (student <= 10) {

 12 printf("Enter result (1=pass,2=fail): ");

 13 scanf("%d", &result);

 14

 15 if (result == 1) /* if/else nested in while */

 16 passes = passes + 1;

 17 else

 18 failures = failures + 1;

 19

 20 student = student + 1;

 21 }

 22

 23 printf("Passed %d\n", passes);

 24 printf("Failed %d\n", failures);

 25

 26 if (passes > 8)

 27 printf("Raise tuition\n");

 28

 29 return 0; /* successful termination */

 30 }

Problem Solving 2: C Program

 Program Output

Enter Result (1=pass,2=fail): 1

Enter Result (1=pass,2=fail): 2

Enter Result (1=pass,2=fail): 2

Enter Result (1=pass,2=fail): 1

Enter Result (1=pass,2=fail): 1

Enter Result (1=pass,2=fail): 1

Enter Result (1=pass,2=fail): 2

Enter Result (1=pass,2=fail): 1

Enter Result (1=pass,2=fail): 1

Enter Result (1=pass,2=fail): 2

Passed 6

Failed 4

Problem Solving 2: C Program

Dr. Tarek Helmy, ICS-KFUPM

The End!!

Thank you

Any Questions?

56

