
1 Dr. Tarek Helmy, ICS-KFUPM

Chapter 2:

Overview of C Programming Language

Dr. Tarek Ahmed Helmy El-Basuny

Lectures 3-6

ICS-103

Computer Programming in C

Topics to be Discussed

 Sequential/Procedural vs. Object-Oriented Programming

 Why it is important to learn C-language?

 Writing and Running C Programs

 General form of a C program

 Pre-Processor Directives (i.e. #include, #define, etc.)

 The main Function

 Standard Libraries

 Reserved words, Identifiers (Standard and User-defined),

 Simple C Program example (Adding Two Integers),

 Data Types (int, double, char, void), Constant and Variable Declarations,

 Assignment and Executable Statements

 Input and Output Functions,

 Arithmetic Expressions, Arithmetic Operators

 Data Type of an Expression,

 Mixed-Type Assignment Statement

 Type Conversion Through Casts

 Unary and Binary Operators

 Rules for Evaluating Arithmetic Expressions with Multiple Operators

 Examples of Evaluating Arithmetic Expressions

 Formatting Numbers in Program Output

2 Dr. Tarek Helmy, ICS-KFUPM

Procedural vs. Object-Oriented Programming

 The unit in Procedural Programming (PP) like C is a function, and the

unit in Object-Oriented Programming (OOP) like C++ is a class.

 PP concentrates on creating functions, while OOP concentrates on the

classes, and the methods inside them.

 PP separates the data of the program from the operations that

manipulate the data, while OOP encapsulates both of them.

 In PP, the program is composed of a collection of instructions to the

computer.

 In OOP, the program is composed of a collection of objects that

communicate with each other.

Dr. Tarek Helmy, ICS-KFUPM 3

Why is the C Language Important?

 C is the mother of all popular programming languages.

 C programming language is used widely in coding operating systems, language

compilers, network drivers, language interpreters, and system utilities.

 C is really simple to learn and practically does not require any dependencies.

 C offers a very flexible and dynamic memory management.

 Memory is allocated statically, automatically, or dynamically in C programming with

the help of malloc (single variable), calloc (two variable allocation with zeros

initialized), realloc (change the allocated size), and free (de-allocate) library

functions.

 Whatever the platform, C is probably available.

 C is portable language; this means that C programs written for one computer system

can be run on another system, with little or no modification.

 C language is well suited for structured programming and commonly used programming

language in industry.

 Produces optimized programs that run fast.

 Many companies and software projects do their programming in C.

 Once you have learned C, you can learn any other languages by yourself.

 It is a robust language with rich built in functions and operators that can be used to write

any complex program.

Dr. Tarek Helmy, ICS-KFUPM 4

Writing and Running C Programs

#include <stdio.h>

/* The simplest C Program */

int main(int argc, char **argv)

{

 printf(“Hello World\n”);

 return 0;

}

1. Write the text of program (source code) using an editor such

as Dev C++ or emacs, save it as a file e.g. my_program.c

2. Run the compiler to convert program from source to an

“executable” or “binary”:

 $ gcc –Wall –g my_program.c –o my_program

my_program

$ gcc -Wall –g my_program.c –o my_program

tt.c: In function `main':

tt.c:6: parse error before `x'

tt.c:5: parm types given both in parmlist and sepa
rately

tt.c:8: `x' undeclared (first use in this function
)

tt.c:8: (Each undeclared identifier is reported on
ly once

tt.c:8: for each function it appears in.)

tt.c:10: warning: control reaches end of non-void
function

tt.c: At top level:

tt.c:11: parse error before `return'

3. If the Compiler gives errors and warnings; then

Re-edit the source file, fix it, and re-compile.

4. If the compilation process succeeded then Run it

 and see if it works.

 $./my_program

 Hello World

 $

• -Wall option means to report all Warnings during the compilation.

• -g option means to generate debug information to be used by the

debugger.

• -o option means write the build output to an output file.

What if it doesn’t work?

Dr. Tarek Helmy, ICS-KFUPM 5

General form of a C Program

6 Dr. Tarek Helmy, ICS-KFUPM

 Preprocessor directives

#include <stdio.h>

/*Include the source code for library file stdio.h into your program*/

#define KMS_PER_MILE 1.609

/*Substitute the name KMS_PER_MILE wherever it appears with1.609 */

Comments

 Statements that clarify the program, ignored by compiler but "read" by humans.

 i.e. /* Calculate cost of trip */

Main function and other functions where each Function body may contain:

{

Declarations
int kids, courses; /*Declares the variables kids and courses that can store integer values */

char initial; /* Declares the variable initial that can store a single character */

Executable statements

printf("Enter dist in miles> ");

scanf("%lf", &miles);

printf("That equals %f kms.\n", kms);

}

The main Function

 Every C program has a main function and it is the entry point (execution begins)

of a C program. It is "called" by the operating system when the user runs the C

program. The correct signature of the function is:

main(void) { /* body */ } // if there are no arguments and return value

int main(void) { /* body */ } // if there is a return value but no arguments

int main(int argc, char *argv[]) { /* body */ } // if there are arguments and return value

 Braces { and } mark the beginning and the end of the body of function main.

 int means that main "returns" an integer value.

 If we want to know whether the program has terminated successfully or not, we

need a return value which can be zero or a non zero value.

 Hence the function becomes int main () and is recommended

 A function body has two parts:

 Declarations part that tells the compiler what memory cells/variables are

needed in the function.

 Executable statements (derived from the algorithm) are translated into

machine language and later executed by the computer.

7 Dr. Tarek Helmy, ICS-KFUPM

General Form of a C program

#include <stdio.h>

/* The simplest C Program */

int main(int argc, char **argv)

{

 printf(“Hello World\n”);

 return 0;

}

• The variables are named argc (argument count) and argv (

argument vector), but they can be given any valid identifier.

• int main(int num_args, char**arg_strings) is equally valid.

• argc is the number of arguments being passed into your pro

gram from the command line.

• argv is a one-dimensional array of strings.

• Each string is one of the arguments that was passed to the

program.

#include directive will include header files that have the definitions of functions

used in the program. Example: printf function is defined in the header file stdio.h

This is a comment line where the compiler ignores it.

Blocks of code (“lexical scopes”) are

marked by { … }

Print out a message. ‘\n’ means “new line”. Return ‘0’ from this function

Can your program have more than one .c file?

Dr. Tarek Helmy, ICS-KFUPM 8

General Form of a C program

 Preprocessor directives modify the text of a C

program before compilation.

 Every variable has to be declared before using it.

 Executable statements are

translated into machine

language and eventually

executed.

9 Dr. Tarek Helmy, ICS-KFUPM

 Every C program has a main function.

10

main function main function

body

• Any function body usually has two parts:

 declarations - tell the compiler what memory cells are needed in the function

 executable statements - (derived from the algorithm) are translated into machine

language and later executed by the compiler.

 Another function my be called to perform a certain task.

The main Function

10 Dr. Tarek Helmy, ICS-KFUPM

What is a Function?

#include <stdio.h>

/* The simplest C Program */

int main(int argc, char **argv)

{

 printf(“Hello World\n”);

 return 0;

}

Function Arguments

Return type, or void

• “printf()” is another function, like main().

• It’s defined for you in a “c.library”.

• “c.library”, is a collection of functions

you can call from your program.

• A Function is a series of instructions to perform a certain task.

• You pass arguments to a function and it returns a result value.

• “main()” is a Function. It always gets called first when you run your program.

Returning a value

Dr. Tarek Helmy, ICS-KFUPM 11

Standard Libraries

 Standard Libraries contains useful functions and symbols that are

predefined by the C language developers.

 You must include <stdio.h> if you want to use the printf and scanf

library functions.

 It contains information about standard input and output functions

that are inserted into your program before compilation.

 You must include <math.h> if you want to do some

mathematical operations in your program.

 You must include <time.h> if you are going to defines date and

time handling functions.

 You must include <string.h> if you are going to deal with string

handling functions.

12 Dr. Tarek Helmy, ICS-KFUPM

Pre-Processor Directives

 Preprocessor directives are commands that give instructions to the C

preprocessor to modify a C program prior to its compilation.

 Preprocessor directives begin with #

#include <stdio.h>

 Include Standard I/O Library header file (.h file)

 if you want to use the printf and scanf library functions.

#include <math.h>

 Include Standard Math Library header file (.h file)

 if you want to use the sqrt and abs library functions.

#define PI 3.141593

 Define the constant PI

13 Dr. Tarek Helmy, ICS-KFUPM

#include <stdio.h>

#define PI 3.14

int main()

{

 double area, radius;

 area = PI * radius * radius;

 printf(“Area of circle = %lf”, area);

 return 0;

}

#define Directive

 The #define directive instructs the preprocessor to replace each

occurrence of a text by a particular constant value before

compilation.

 Should be placed outside main function.

 #define replaces all occurrences of the text you specify with the

constant value you specify.

#define NAME of the constant value

 Examples:

#define KMS_PER_MILES 1.609

#define PI 3.141593

14 Dr. Tarek Helmy, ICS-KFUPM

Reserved Words

 A reserved word means a

word that has special meaning

to C and can not be used for

other purposes.

 These are words that C

reserves for its own uses.

 Examples:

 Built-in Types: int, double,

char, void, etc.

 Control flow: if, else, for,

while, return, etc.

 Reserved words always

appear in lower case.

15 Dr. Tarek Helmy, ICS-KFUPM

Example of C Reserved Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

16 Dr. Tarek Helmy, ICS-KFUPM

Example: Miles-to-Kilometers Conversion C Program

Identifiers and Standard Identifiers

 An Identifier means a name given to a variable or a function in your

program.

 Standard Identifier: An identifier defined in a standard C library and

has special meaning in C.

 Examples of standard identifiers are: printf, scanf, sqrt, string.h,

time.h, etc.

 Standard identifiers are not reserved words.

 You can redefine standard identifiers if you want to, but it is

not recommended.

 For example, if you defined your own function printf, then you

cannot use the C library function printf.

17 Dr. Tarek Helmy, ICS-KFUPM

User-Defined Identifiers

 We choose our own identifiers to

 Name memory-cells/variables that will hold data and program results.

 Name functions that we define.

 Rules for Naming Identifiers:

 An identifier consists only of letters, digits, and underscores (It can start with underscore)

 Commas or blank spaces are not allowed within an identifier.

 An identifier cannot begin with a digit.

 C reserved keywords cannot be used as an identifier.

 A standard C identifier should not be redefined.

 Identifiers should not be of length more than 32 characters, some compiler may

accept identifiers with length more than 32 characters.

 Uppercase and lowercase letters are distinct (identifiers are case sensitive).

 No Special Symbols other than underscore(_) are allowed.

 First Character should be alphabet or Underscore.

 Examples of Valid identifiers: letter1, inches, KM_PER_MILE, _NUM, Num1,

 Examples of Invalid identifiers: please explain why?

 1letter, 1b a, Happy$trout, !abc123, abc.123, return, char, int, continue, etc.

18 Dr. Tarek Helmy, ICS-KFUPM

Guidelines for Naming Identifiers

 Uppercase and lowercase are different

 LETTER, Letter, letter are different identifiers

 Avoid names that only differ by case. They can lead to

problems of finding bugs (errors) in the program.

 Choose meaningful identifiers (easy to understand)

 Example: distance = speed* time

 Means a lot more than z = x * y

 Choose #define constants to be ALL UPPERCASE

 Example: KMS_PER_MILE is a defined constant

 As a variable, we can probably name it:

KmsPerMile or Kms_Per_Mile

19 Dr. Tarek Helmy, ICS-KFUPM

20 Dr. Tarek Helmy, ICS-KFUPM

Simple C Program: Adding Two Integers

/* Addition program */

 1 #include <stdio.h>

 2 int main() // the main function without arguments can accept any parameters

 3 {

 4 int integer1, integer2, sum; /* declaration */

 5 printf("Enter first integer\n"); /* prompt */

 6 scanf("%d", &integer1); /* read an integer */

 7 printf("Enter second integer\n"); /* prompt */

 8 scanf("%d", &integer2); /* read an integer */

 9 sum = integer1 + integer2; /* assignment of sum */

 10 printf("Sum is %d\n", sum); /* print sum */

 11 return 0; /* indicate that program ended successfully */

 12 }

 Initialize variables

 Input

Sum

Print

Enter first integer

45

Enter second integer

72

Sum is 117

Simple C Program: Adding Two Integers

 The program contains

 Comments, #include <stdio.h> and main

 Declaration of variables

 Variables: locations in memory where a value can be stored

 int integer1, integer2, sum;

 int means the variables can hold integers (-1, 3, 0, 47)

 Variable names (identifiers)

 integer1, integer2, sum

 Identifiers: consist of letters, digits (cannot begin with a digit).

• Case sensitive

 Declarations appear before executable statements

 If an executable statement references undeclared variable then it

will produce a syntax (compiler) error.

21 Dr. Tarek Helmy, ICS-KFUPM

 scanf("%d", &integer1);

 Obtains a value from the user

 scanf uses standard input (usually keyboard)

 This scanf statement has two arguments

 %d - indicates data should be a decimal integer

 &integer1 - location in memory to store variable

 The & (ampersand symbol) usually included with the

variable name in scanf statements.

 When executing the program:

 The user responds to the scanf statement by typing in a

number, then presses the enter (return) key.

Simple C Program: Adding Two Integers

22 Dr. Tarek Helmy, ICS-KFUPM

 = (assignment operator)

 Assigns a value to a variable

 Is a binary operator (has two operands)

sum = variable1 + variable2;

sum gets variable1 + variable2;

 Usually the variable receiving value will be on the left

 printf("Sum is %d\n", sum);

 Similar to scanf

 %d means decimal integer will be printed

 \n means print the sum value in a new line

 sum specifies what integer will be printed

 Calculations can be performed inside printf statements

printf("Sum is %d\n", integer1 + integer2);

Simple C Program: Adding Two Integers

23 Dr. Tarek Helmy, ICS-KFUPM

Data Types

 Data Types: simply refers to the type and size of data associated with variables

and functions. Fundamental Data types in C are:-

 int: stores signed integer values: whole numbers, i.e. 65, -12345, …

 float: floating point value: i.e. a number with a fractional part (movable decimal

point). i.e. 0.5, 0.71428, -33.33, 3.14, ½, 5/7.

 A float number is a 32 bit max. (23 for the whole, 1 bit for the sign, 8 bits for the

exponent), i.e. float has 6 decimal digits of precision.

 float numbers take up less memory and are faster in processing.

 A double number is a 64 bit max. (1 bit for the sign, 11 bits for the exponent, and

52 bits for the value),

 double number has 15 decimal digits of precision and uses more memory than float.

 char: Stores character values.

 Each char value is enclosed in single quotes: 'A', '*‘

 A character can be a letter, digit, or special symbol.

 Arithmetic (+, -, *, /) and comparison (<, >, ..) operations can be performed on int,

float, and double types where compare operations can be performed on char type.

24 Dr. Tarek Helmy, ICS-KFUPM

Integer and Floating-Point Data Types

 Integer Types in C

Type Size in Memory Range (from ~ to ~)

short 2 bytes = 16 bits -32768 to +32767

unsigned short 2 bytes = 16 bits 0 to 65535

int 4 bytes = 32 bits -2147483648 to +2147483647

unsigned int 4 bytes = 32 bits 0 to 4294967295

long 4 bytes = 32 bits Same as int

long long 8 bytes = 64 bits -9×1018 to +9×1018

 Floating-Point Types in C

Type Size in Memory Approximate Range Significant Digits

float 4 bytes = 32 bits 10-38 to 10+38 6

double 8 bytes = 64 bits 10-308 to 10+308 15

25 Dr. Tarek Helmy, ICS-KFUPM

Characters and ASCII Code

 Character Type in C

Type Size in Memory ASCII Codes

char 1 byte = 8 bits 0 to 255

ASCII Codes and Special Characters

Character ASCII Code

'0' 48

'9' 57

'A' 65

'B' 66

'Z' 90

'a' 97

'b' 98

'z' 122

Special Characters Meaning

' ' Space Character

'*' Star Character

'\n' Newline

'\t' Horizontal Tab

'\'' Single Quote

'\"' Double Quote

'\\' Backslash

'\0' NULL Character

26 Dr. Tarek Helmy, ICS-KFUPM

Constant Declarations

 Constants refer to values that cannot be changed during execution of the program,

neither by the programmer nor by the computer. Constants are also called literals.

 Constants can be of any basic data types like an integer constant, a floating constant,

a character constant.

 Numeric constants e.g. 3 5.25 -2.5428e5 3.682E-4

 Note -2.5428e5 has the value -2.5428 * 105 ,

 similarly 3.682E-4 has the value 3.682 * 10-4

 The number after the e or E must be integer;

 Hence the following constant is invalid: 2.5e3.0 .

 A constant can be declared by using either of the following two methods:

 The #define pre-processor directive or

 By using the const keyword in a declaration:

 Example:

 #define PI 3.14159

 or

 const double PI 3.14159;

 or

 double const PI 3.14159;

27 Dr. Tarek Helmy, ICS-KFUPM

Variable Declarations

 Variables: The memory cells used for storing a program’s input data and its

computational results.

 The Value of a variable can change at runtime.

 Variable declarations: Statements that communicate to the compiler the

names of variables in the program and the type of data they can store.

 Syntax:

 Example: int studentID;

 double age = 18.4;

 double miles, kms;

 int count;

 char answer;

 C requires that you declare every variable in the program before using it.

28 Dr. Tarek Helmy, ICS-KFUPM

<variable_type> <variable_name> = <initial_value>;

Executable Statements

 Executable Statements: C statements used to write or code the

algorithm.

 C compiler translates the executable statements to machine

code.

 Examples of executable Statements:

 Assignment statements, such as sum = variable1 + variable2;

 Function calls, such as calling printf and scanf.

 return statement.

 if and switch statements (selection) - will be explained later.

 for and while statements (iteration) - will be explained later.

29 Dr. Tarek Helmy, ICS-KFUPM

Assignment Statement

 The assignment statement computes the expression that appears

after the assignment operator (=) and stores its value in the variable

that appears to the left.

 Stores a value or a computational result in a variable

 variable = expression;

 = is the assignment operator

 For example:

 a=10; /*Stores the value 10 in the int variable a*/

 average = (a+b) / 2; /* the result of (a+b)/2 will be stored in the

variable named average*/.

30 Dr. Tarek Helmy, ICS-KFUPM

31 Dr. Tarek Helmy, ICS-KFUPM

Programs in Memory

Miles-to-Kilometers Conversion Program before and after executing the program.

• Program in Memory: Before execution (a) and After Execution (b).

• The ? In the memory cells miles and kms (a) indicate that the values of these cells

are undefined before program execution begins.

• Once the values of these variables are read from the input device, will be written int

the memory cells as shown in (b).

Effect OF kms = KMS_PER_MILE * miles

• The value assigned to kms is the result of multiplying the constant

KMS_PER_MILE by the variable miles.

32 Dr. Tarek Helmy, ICS-KFUPM

Assignment Statement

Effect OF: sum = sum + item

90 20

+

sum item

110

sum

Before assignment

After
assignment

 Note, the assignment operator does NOT mean equality

 The equality operator in C is ==

 Read = as "becomes"

33 Dr. Tarek Helmy, ICS-KFUPM

Assignment Statement

 Example of assignment statment:
 next_letter = `A`;
 new_x = x;

Input/Output Operations and Functions

 Input Operation: data transfer from the outside world (i.e. typed on the

keyboard by the program’s user, read from a file, received from another

computer, sensed by sensors, etc.) into computer’s memory.

 Output Operation: program results can be sent to the outside world (i.e.

displayed on the monitor to the program’s user, written into a file, sent to

another computer, converted into action, etc.).

 Input/output Functions: special library functions that do all input/output

operations.

 Printf: output function

 scanf: input function

 We have to include “stdio.h” header file to make use of the printf() and scanf()

library functions in C language.

 Function call/invoke: used to call or activate a function for execution.

 Asking another piece of code to do some work for you

34 Dr. Tarek Helmy, ICS-KFUPM

The printf Function

 If the value of kms is 16.0900000, then the output will be like:

 That equals 16.0900000 kilometers.

function name

printf("That equals %f kilometers.\n", kms);

function arguments

format string
print list

place holder

35 Dr. Tarek Helmy, ICS-KFUPM

• It is a C predefined output function in the "stdio.h" header file,

• By using the printf function, we can print the data or user defined message on console

or monitor.

• To generate a new line, we use “\n” in C printf() statement.

• The signature of the printf function is as following:

Placeholders

 Placeholders always begin with the (percent) % symbol.

 % marks the place in a format string where a value will be printed

out or will be read.

 Format strings can have multiple placeholders, if you are printing

multiple values.

Placeholder Variable Type Function Use

%c char printf / scanf

%d int printf / scanf

%f double printf

%lf double scanf

36 Dr. Tarek Helmy, ICS-KFUPM

 Note: the placeholder used with scanf are the same as those used with
printf except with variables of type double.

 Type double variable use %f placeholder with printf and %lf
with scanf.

Other Placeholder

37 Dr. Tarek Helmy, ICS-KFUPM

Placeholder Output Conversions

`%d', Print an integer as a signed decimal number

`%ld', Print a long integer as a signed decimal number

`%o' Print an integer as an unsigned octal number

`%s' Print string variable

`%u' Print an integer as an unsigned decimal number

`%f' Print a floating-point number in normal (fixed-point) notation

`%lf' Print a Long double

`%x' Print hexadecimal variable.

`%e', `%E’ Print a floating-point number in exponential notation.

`%c' Print a single character

`%lc' Print a single wide character.

`%p' Print the value of a pointer

`%%' Print a literal `%' character.

Multiple Placeholders

38 Dr. Tarek Helmy, ICS-KFUPM

 Format strings can have multiple placeholders if printf or scanf call
has several variables.

 printf("Color %s, number1 %d\n", "red", 123456);

 printf(“Hi %c %c %c – your age is %d\n", letter_1, letter_2, letter_3, age);

 If letter_1, letter_2, letter_3 are assigned ABC characters and the age variable
assigned 35, then last prinf will display

Hi ABC – your age is 35

Topics to be Discussed

 Sequential/Procedural vs. Object-Oriented Programming

 Why it is important to learn C-language?

 Writing and Running C Programs

 General form of a C program

 Pre-Processor Directives (i.e. #include, #define, etc.)

 The main Function, Standard Libraries

 Reserved words, Identifiers (Standard and User-defined),

 Simple C Program example (Adding Two Integers),

 Data Types (int, float, double, char),

 Constant and Variable Declarations,

 Assignment and Executable Statements,

 Output Function, printf

 Input Function, scanf

 Arithmetic Expressions, Arithmetic Operators

 Data Type of an Expression,

 Mixed-Type Assignment Statement

 Type Conversion through Casts

 Unary and Binary Operators

 Rules for Evaluating Arithmetic Expressions with Multiple Operators

 Examples of Evaluating Arithmetic Expressions

 Formatting Numbers in Program Output

39 Dr. Tarek Helmy, ICS-KFUPM

Displaying Prompts

 When input data is needed in an interactive program, you should use

the printf function to display a prompting message that tells the user

what data to enter.

printf("Enter the distance in miles> ");

printf("Enter the object mass in grams> ");

40 Dr. Tarek Helmy, ICS-KFUPM

Formatting Integers in Program Output

 You can specify how printf will display integers

 For integers, use %nd

 % start of placeholder

 n is the optional field width = number of columns to display

 If n is less than integer size, it will be ignored

 If n is greater than integer size, spaces are added to the left.

Value Format Output Value Format Output

234 %4d 234 -234 %4d -234

234 %5d 234 -234 %5d -234

234 %6d 234 -234 %6d -234

234 %1d 234 -234 %2d -234

41 Dr. Tarek Helmy, ICS-KFUPM

Formatting Type Double Values

 Use %n.mf for double values

 n is the optional field width = number of digits in the whole

number, the unary minus, decimal point, and fraction digits.

 If n is less than what the number needs it will be ignored

 .m is the number of decimal places (optional)

Value Format Output Value Format Output

3.14159 %5.2f 3.14 3.14159 %4.2f 3.14

3.14159 %3.2f 3.14 3.14159 %5.1f 3.1

3.14159 %5.3f 3.142 3.14159 %8.5f 3.14159

0.1234 %4.2f 0.12 -0.006 %4.2f -0.01

-0.006 %8.3f -0.006 -0.006 %8.5f -0.00600

-0.006 %.3f -0.006 -3.14159 %.4f -3.1416

42 Dr. Tarek Helmy, ICS-KFUPM

The scanf Function

 The ampersand symbol (&) is the address operator. It tells scanf the address

of variable miles in memory.

 When user inputs a value, it is stored in miles.

 The placeholder %lf tells scanf the type of data to store into variable miles.

scanf("%lf", &miles);

Function name function arguments

place holders input variables
30.5

miles

30.5 Number Entered

43 Dr. Tarek Helmy, ICS-KFUPM

• It is a C predefined input function in the "stdio.h" header file.

• By using the scanf function, we can read the data typed by the user on the

keyboard. The signature of the scanf function is as following:

Multiple Placeholders

char letter1, letter2, letter3;

scanf("%c%c%c",

 &letter1,

 &letter2,

 &letter3);
letter3

letter1

letter2

C

C Letters Entered

a

r

a r

44 Dr. Tarek Helmy, ICS-KFUPM

 Format strings can have multiple placeholders if printf or scanf call has
several variables.

45 Dr. Tarek Helmy, ICS-KFUPM

scanf & printf example: Adding Two Integers

/* Addition program */

 1 #include <stdio.h>

 2 int main()

 3 {

 4 int integer1, integer2, sum; /* declaration */

 5 printf("Enter first integer\n"); /* prompt */

 6 scanf("%d", &integer1); /* read an integer */

 7 printf("Enter second integer\n"); /* prompt */

 8 scanf("%d", &integer2); /* read an integer */

 9 sum = integer1 + integer2; /* assignment of sum */

 10 printf("Sum is %d\n", sum); /* print sum */

 11 return 0; /* indicate that program ended successfully */

 12 }

 Initialize variables

 Input

Sum

Print

Enter first integer

45

Enter second integer

72

Sum is 117

46 Dr. Tarek Helmy, ICS-KFUPM

A Program accepts two integers and check if they are equal

Case:1

 Enter the values for M and N

 3 3

 M and N are equal

Case:2

 Enter the values for M and N

 5 8

 M and N are not equal

1. /*C program to accept two integers and check if they are equal*/

2. #include <stdio.h>

3. int main(void)

4. {

5. int m, n;

6. printf("Enter the values for M and N\n");

7. scanf("%d %d", &m, &n);

8. if (m == n)

9. printf("M and N are equal\n");

10.else

11.printf("M and N are not equal\n");

12.}

Return Statement

 The return statement transfers control from a function back to the

caller function.

 Once you start writing your own functions, you will use the return

statement to return the result of a function back to the caller.

 Syntax: return expression;

 Example: return (0);

 Returning from the main function terminates the program and

transfers control back to the operating system. Value returned is 0.

47 Dr. Tarek Helmy, ICS-KFUPM

Comments

 Comments make it easier for us to understand the program, but are ignored by the C

compiler.

 Comments are used to create Program Documentation and Help others read and

understand the program.

 The start of the program should consist of a comment that includes programmer’s

name, date, current version, and a brief description of what the program does.

 Two forms of comments:

 /* C comment */ anything between /* and */ is considered a comment, even if it

spans on multiple lines.

/*

* Author: kfupm student

* Purpose: To show a comment that spans multiple lines.

* Language: C

*/

 // C++ comment anything after // is considered a comment until the end of the

line.

 #define AGE 6 // This constant is called AGE

 Always Comment your Code!

48 Dr. Tarek Helmy, ICS-KFUPM

Programming Style

 Why we need to follow conventions?

 A program that looks good is easier to read and understand than

one that is sloppy.

 80% of the cost of software goes to maintenance.

 Hardly any software is maintained for its whole lifetime by the

original programmer.

 Programs that follow the typical conventions are more readable

and allow engineers to understand the code more quickly and

thoroughly.

 Check your text book on how to improve your programming style.

49 Dr. Tarek Helmy, ICS-KFUPM

White Spaces

 The compiler ignores extra blanks between words and symbols, but you may

insert space to improve the readability and style of a program.

 You should always leave a blank space after a comma and before and after

operators such as: + − * / and =

 You should Indent/align/shift the lines of code in the body of a function.

 Indent means arrange statements relative to their neighboring statements,

 How many spaces should you shift the bodies of the statements?

 At least 2 spaces.

 No more than 8 spaces (1 tab).

 The same amount for all statement bodies.

 Example:

50 Dr. Tarek Helmy, ICS-KFUPM

int sum(int a, int b)

{

int result;

result=a+b;

return result;

 }

int sum(int a, int b)

{

 int result;

 result = a + b;

 return result;

 }

White Space Example

int main(void)

{ int foo,blah;

scanf("%d",&foo);

blah=foo+1;

printf("%d", blah);

return 0;}

int main(void)

{

 int foo, blah;

 scanf("%d", &foo);

 blah = foo + 1;

 printf("%d", blah);

 return 0;

}

Bad alignment : Good alignment :

51 Dr. Tarek Helmy, ICS-KFUPM

Bad Programming Practices

 Missing statement of purpose

 Inadequate commenting

 Variables names are not meaningful

 Use of unnamed constant

 Alignment does not represent program structure

 Algorithm is inefficient or difficult to follow

 Program does not compile

 Program produces incorrect results

 Insufficient testing (test case results are different than

expected, program is not fully tested for all cases).

52 Dr. Tarek Helmy, ICS-KFUPM

Arithmetic Expressions

 To solve most programming problems, you need to write

arithmetic expressions that compute data of different types

(i.e. int, double, sometimes char).

 Arithmetic expressions contain variables, constants, function

calls, arithmetic operators, as well as sub-expressions written

within parentheses.

 Examples:

 sum + 1

 (a + b) * (c – d)

 (-b + sqrt(delta))/(2.0 * a)

53 Dr. Tarek Helmy, ICS-KFUPM

Arithmetic Operators

Operator Meaning Examples

+ Addition

5 + 2 is 7

5.0 + 2.0 is 7.0

'B' + 1 is 'C'

– Subtraction

5 – 2 is 3

5.0 – 2.0 is 3.0

'B' – 1 is 'A'

* Multiplication
5 * 2 is 10

5.0 * 2.0 is 10.0

/ Division
5 / 2 is 2

5.0 / 2.0 is 2.5

%

Modulus Operator and

remainder of after an integer

division.

5 % 2 is 1

54 Dr. Tarek Helmy, ICS-KFUPM

Operators / and %

Example Result Explanation

 8(dividend)/
5 (divisor)

 1 Integer operands  integer result

8.0/5.0 1.6 floating-point operands floating-point result

 8 /-5 -1 One operand is negative  negative result

-8 /-5 1 Both operands are negative  positive result

 8 % 5 3 Integer remainder of dividing 8 by 5

 8 %-5 3 Positive dividend  positive remainder

-8 % 5 -3 Negative dividend  Negative remainder

 / and % are undefined when the divisor is 0.

55 Dr. Tarek Helmy, ICS-KFUPM

Data Type of an Expression

 What is the type of expression x+y when x and y are both of type int?

 (answer: type of x+y is int)

 The data type of an expression depends on the type(s) of its

operands.

 If both are of type int, then the expression is of type int.

 Mixed-type expression: is an expression that has mixed operands of

type int and double.

 If either one or both operands are of type double, then the

expression is of type double.

56 Dr. Tarek Helmy, ICS-KFUPM

Mixed-Type Assignment Statement

 If the expression being evaluated and the variable to which it is

assigned have different data types.

 The expression is first evaluated; and the result is assigned to the

variable to the left side of = operator.

 Example: what is the value of y = 5/2 when y is of type double?

(answer: 5/2 is 2; y = 2.0)

 Warning: assignment of a type double expression to a type int

variable causes the fractional part of the expression to be lost.

 Example: what is the type of the assignment y = 5.0 / 2.0 when y

is of type int?

 (answer: 5.0/2.0 is 2.5; y = 2)

57 Dr. Tarek Helmy, ICS-KFUPM

Type Conversion Through Casts

 C allows the programmer to convert the type of an expression by

placing the desired type in parentheses before the expression.

 This operation is called a type cast.

 (double)5 / (double)2 is the double value 2.5

 (int)(9 * 0.5) is the int value 4

 When casting from double to int, the decimal fraction is

truncated (NOT rounded).

58 Dr. Tarek Helmy, ICS-KFUPM

Example of The Use of Type Casts

/* Computes a test average */

#include <stdio.h>

int main(void)

{

 int total; /* total score */

 int students; /* number of students */

 double average; /* average score */

 printf("Enter total students score>\n ");

 scanf("%d", &total);

 printf("Enter number of students>\n ");

 scanf("%d", &students);

 average = (double) total / (double) students;

 printf("Average score is %.2f\n", average);

 return 0;

}

59 Dr. Tarek Helmy, ICS-KFUPM

Unary and Binary Operators

 Operators are of two types: unary and binary

 Unary operators take only one operand (variable)

 Unary minus (-) and Unary plus (+) operators

 ++variable: prefix increment, example: ++x is a shorthand for x = x + 1

 --variable: prefix decrement, similarly --x is a shorthand for x = x – 1

 variable++: postfix increment, x++ is a shorthand for the statement x = x + 1

but the result of x++ is the value of x BEFORE the value is changed.

 Example: assume x is 8, x++ changes x to 9 but returns the value 8.

 variable--: postfix decrement, x-- is a shorthand for the statement x = x - 1

but the result of x-- is the value of x BEFORE the value is changed.

 Example: assume x is 8, x-- changes x to 7 but returns the value 8.

 Binary operators take two operands

 Examples: addition (+), subtraction (–), multiplication (*), division (/) and

integer remainder (%) operators.

 A single expression could have multiple operators

 v = u + a * t, we are multiplying two numbers and result is added to ‘u’ and

total result is assigned to v.

60 Dr. Tarek Helmy, ICS-KFUPM

Position of Operators in an expression

61 Dr. Tarek Helmy, ICS-KFUPM

Type Explanation Example

Infix Expression in which Operator is in between Operands a + b

Prefix Expression in which Operator is written before Operands + a b

Postfix Expression in which Operator is written after Operands a b +

Operator name Syntax Meaning

Addition assignment a += b a = a + b

Subtraction assignment a -= b a = a - b

Multiplication assignment a *= b a = a * b

Division assignment a /= b a = a / b

Modulo assignment a %= b a = a % b

Priority Rank Operator Description Operator Associativity

1 Multiplication * Left to Right

1 Division / Left to Right

1 Modulo % Left to Right

2 Addition + Left to Right

2 Subtraction - Left to Right

62 Dr. Tarek Helmy, ICS-KFUPM

Arithmetic Operations Program

#include <stdio.h>

main() {

int a = 21;

int b = 10;

int c ;

c = a + b; //Addition

printf("Line 1 - Value of c is %d\n", c);

c = a - b; //Subtraction

printf("Line 2 - Value of c is %d\n", c);

c = a * b; //Multiplication

printf("Line 3 - Value of c is %d\n", c);

c = a / b; //Division

printf("Line 4 - Value of c is %d\n", c);

c = a % b; //Reminder

printf("Line 5 - Value of c is %d\n", c);

c = a++; //Post increment

printf("Line 6 - Value of c is %d\n", c);

c = a--; //Post Decrement

printf("Line 7 - Value of c is %d\n", c);

 }

63 Dr. Tarek Helmy, ICS-KFUPM

Output:

Line 1 - Value of c is 31

Line 2 - Value of c is 11

Line 3 - Value of c is 210

Line 4 - Value of c is 2

Line 5 - Value of c is 1

Line 6 - Value of c is 21

Line 7 - Value of c is 22

#include <stdio.h>

main() {

int a = 21;

int b = 10;

int c ;

c = a + b;

printf("Line 1 - Value of c is %d\n", c);

c = a - b;

printf("Line 2 - Value of c is %d\n", c);

c = a * b;

printf("Line 3 - Value of c is %d\n", c);

c = a / b;

printf("Line 4 - Value of c is %d\n", c);

c = a % b;

printf("Line 5 - Value of c is %d\n", c);

c = a++;

printf("Line 6 - Value of c is %d\n", c);

c = a--;

printf("Line 7 - Value of c is %d\n", c);

 }

Arithmetic Operations Program

http://www.learn-c.org/

Rules for Evaluating Expressions with Multiple Operators

 Parentheses rule: All expressions in parentheses must be evaluated

separately.

 Nested parenthesized expressions must be evaluated from the

inside out, with the innermost expression evaluated first.

 Operator precedence rule: Multiple operators in the same expression

are evaluated in the following order:

 First: unary +, –

 Second: *, /, %

 Third: binary +, –

 Associativity rule

 Unary operators in the same sub-expression and at the same

precedence level are evaluated right to left.

 Binary operators in the same sub-expression and at the same

precedence level are evaluated left to right.

64 Dr. Tarek Helmy, ICS-KFUPM

Example: Expression Evaluation

65 Dr. Tarek Helmy, ICS-KFUPM

1. What the value of x in the following expression?

 x = 9-12/3+3*2-1

• The * and / operators are having higher precedence than + and – operators.

• The * and / operators are at the same level of precedence,

• We go left-to-right, and apply the / operator first so:

x = 9-4+3*2-1

• Next, we apply the * operator and the expression becomes:

x = 9-4+6-1

• Next, we apply the first – operator as the – and + operators are at the same level and

we go from left to right. The expression becomes:

x = 5+6-1

• Now, we apply the + operator and the expression become:

x = 11-1

• Finally, we apply the – operator and the result is:

x = 10

Example: Expression Evaluation

66 Dr. Tarek Helmy, ICS-KFUPM

1. Which of the following correctly shows the hierarchy of arithmetic operations in C?

A. / + * -

B. * - / +

C. + - / *

D. / * + -

2. Which of the following is the correct order of evaluation for the below expression?

z = x + y * z / 4 % 2 - 1.

A. * / % + - =

B. = * / % + -

C. / * % - + =

D. * % / - + =

Example: Expression Evaluation

67 Dr. Tarek Helmy, ICS-KFUPM

1. Which of the following correctly shows the hierarchy of arithmetic operations in C?

A. / + * -

B. * - / +

C. + - / *

D. / * + -

2. Which of the following is the correct order of evaluation for the below expression?

z = x + y * z / 4 % 2 - 1.

A. * / % + - =

B. = * / % + -

C. / * % - + =

D. * % / - + =

Answer: D

Answer: A

Example of Postfix and Prefix Unary Plus

#include<stdio.h>

void main()

{

 int i = 0, j = 0;

 j = i++ + ++i;

 printf("%d\n", i);

 printf("%d\n", j);

}

68 Dr. Tarek Helmy, ICS-KFUPM

What is the Output :

http://www.learn-c.org/

Example of Postfix and Prefix Unary Plus

#include<stdio.h>

#include<conio.h>

void main()

{

 int i = 0, j = 0;

 j = i++ + ++i;

 printf("%d\n", i);

 printf("%d\n", j);

}

69 Dr. Tarek Helmy, ICS-KFUPM

Operator Precedence Rank

Pre Increment 1

Post Increment 2

Arithmetic Operator 3

Assignment Operator 4

Output :

2

2

Step-by-Step

Expression

Evaluation Evaluation

Tree

70 Dr. Tarek Helmy, ICS-KFUPM

Rules for Evaluating Expressions

Evaluate: z - (a + b/2) + w*-y

Evaluation Tree

71 Dr. Tarek Helmy, ICS-KFUPM

Rules for Evaluating Expressions

Evaluation Tree and Evaluation for v = (p2 - p1) / (t2 - t1);

Rules for Evaluating Expressions

72 Dr. Tarek Helmy, ICS-KFUPM

Writing Mathematical Formulas in C

 You may encounter two problems in writing a mathematical formula in

C.

 First, multiplication often can be implied in a formula by writing two

letters to be multiplied next to each other.

 In C, you must state the * operator

 For example, 2a should be written as 2 * a.

 Second, when dealing with division we often have:

 This should be coded as (a + b) / (c + d).

dc

ba





73 Dr. Tarek Helmy, ICS-KFUPM

Supermarket Coin Processor

74 Dr. Tarek Helmy, ICS-KFUPM

Supermarket Coin Processor (cont'd)

75 Dr. Tarek Helmy, ICS-KFUPM

Common Programming Errors

 Syntax Errors (Detected by the Compiler)

 Violating one or more grammar rules.

 Missing semicolon (end of variable declaration or statement).

 Undeclared variable (using a variable without declaration).

 Comment not closed (missing */ at end of comment).

 Run-Time Errors (NOT detected by compiler)

 Detected by the computer when running the program.

 Illegal operation, such as dividing a number by zero.

 Program cannot run to completion.

 Undetected and Logic Errors

 Program runs to completion but computes wrong results.

 Input was not read properly.

 Wrong algorithm and computation.

76 Dr. Tarek Helmy, ICS-KFUPM

Dr. Tarek Helmy, ICS-KFUPM

The End!!

Thank you

Any Questions?

77

